
When training to regain movement after stroke or spinal cord injury (SCI), patients must once again learn how to keep their balance during walking movements. Current clinical methods support the weight of the patient during movement, while setting the body off balance. This means that when patients are ready to walk without mechanical assistance, it can be hard to re-train the body to balance against gravity. This is the issue addressed in a recent paper published in Science Translational Medicine by a team lead by Courtine-Lab, and featuring Ijspeert Lab, NCCR Robotics and EPFL.

Meet the NCCR Robotics Paik Lab (RRL, EPFL) – headed by Professor Jamie Paik, the lab is dedicated to creating interactive robotic systems using cutting edge manufacturing techniques. The lab specialises in creating soft, foldable robots for use in a variety of situations, including creating compliant robotic assistive devices for people with disabilities.
Over recent years the explosion in popularity of drones, both professionally and for amateur use, has inspired researchers to consider how to make flying robots as safe and robust as possible. Previous design methods have included producing bulky protective cages or making them as unlikely to crash as possible. Recently, researchers from Floreano Lab, NCCR Robotics and EPFL have presented a new approach to making crash resilient quadcopters – making them soft, so it doesn’t matter if they come into contact with their surrounding environment.
On 8 October 2016, the world’s first Cybathlon took place in Zurich, Switzerland. The event, organised by ETH Zurich with NCCR Robotics as presenting sponsor, offered the opportunity for people with disabilities to work with technology providers to create solutions that would help them to complete a series of tasks of daily life.

Bioinspired robots that take their designs from biology has been a big research area in recent years, but a team from NCCR Robotics, Floreano Lab have just gone one step further and designed a feathered drone to fully replicate the agile flight of birds.
A group from Floreano Lab, EPFL and NCCR Robotics has today published their novel variable stiffness fibre with self-healing capability.
Soft “hardware” components are becoming more and more popular solutions within the field of robotics. In fact softness, compliance and foldability bring significant advantages to devices by allowing conformability and safe interactions with users, objects and unstructured environments. However for some applications, the softness of components adversely reduces the range of forces those devices can apply or sustain. An optimal solution would be having components able to vary their softness according to the needed task.
This week, the world’s first Cybathlon will take place in Zurich, Switzerland and today we present to you the second of the NCCR Robotics teams to be taking part in the competition, LeMano. The Cybathlon is the brainchild of NCCR Robotics co-director and ETH Zurich professor Robert Riener, and is designed to facilitate discussion between academics, industry and end users of assistive aids, to promote the position of people with disabilities within society and to push development of assistive technology towards solutions that are suitable for use all-day, every day.
When designing robots to help in the search for victims after a natural disaster, a number of features are important: robustness, long battery life and ease of transport. With this latest constraint in mind, a team from Floreano Lab, EPFL and NCCR Robotics will present their new drone with insect-inspired folding wings at IROS 2016.

When you walk across a room or down a path, your brain is making thousands of decisions on how best to move. For example, how best to use your weight, scanning for any obstacles or uneven surfaces, and how rigid (or soft) your limbs and joints should be. Teaching a robot to conduct the same decision-making process is ongoing in robotics, and a team from ADRL, ETH Zurich and NCCR Robotics is studying existing direct transcription methods for trajectory optimization applied to robot motion planning.
For those with extreme mobility problems, such as paralysis following spinal cord injury or neurological disease, telepresence can greatly help to offset social isolation. However, controlling a mobile telepresence device through obstacles like doorways can be difficult when fine motor skills have been compromised. Researchers from CNBI, EPFL and NCCR Robotics this week published a cunning solution that uses brain-computer interfaces (BCIs) to enable patients to share control with the robot, making it far easier to navigate.

The use of robots to find victims after natural disasters is fast becoming commonplace, with well documented cases where robots have been sent into areas too dangerous for rescue workers. While the issues surrounding robustness, control and autonomy are frequently cited as key areas for research, a team from LIS, EPFL and NCCR Robotics is working on another important aspect, how to make flying robots easily transportable and quick to deploy.
November 26, 2019
Need help spreading the word?
Join the Robohub crowdfunding page and increase the visibility of your campaign