Robohub.org
 

Using geometry to help robots map their environment


by
26 February 2014



share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

To get around unknown environments, most robots will need to build maps. To help them do so, robots can use the fact that human environments are often made of geometric shapes like circles, rectangles and lines. The latest paper in Autonomous Robots presents a flexible framework for geometrical robotic mapping in structured environments.

Most human designed environments, such as buildings, present regular geometrical properties that can be preserved in the maps that robots build and use. If some information about the general layout of the environment is available, it can be used to build more meaningful models and significantly improve the accuracy of the resulting maps. Human cognition exploits domain knowledge to a large extent, usually employing prior assumptions for the interpretation of situations and environments. When we see a wall, for example, we assume that it’s straight. We’ll probably also assume that it’s connected to another orthogonal wall.

This research presents a novel framework for the inference and incorporation of knowledge about the structure of the environment into the robotic mapping process. A hierarchical representation of geometrical elements (features) and relations between them (constraints) provides enhanced flexibility, also making it possible to correct wrong hypotheses. Various features and constraints are available, and it is very easy to add even more.

A variety of experiments with both synthetic and real data were conducted. The map below was generated from data measured by a robot navigating Killian Court at MIT using a laser scanner, and allows the geometrical properties of the environment to be well respected. You can easily tell that features are parallel, orthogonal and straight where needed.

map2

For more information, you can read the paper Feature based graph-SLAM in structured environments ( P. de la Puente and D. Rodriguez-Losada , Autonomous Robots – Springer US, Feb 2014) or ask questions below! 



tags: ,


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).





Related posts :



Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence