Robohub.org
 

Contour extraction for mapping


by
29 July 2010



share this:

To map their environment, robots typically collect large amounts of range and bearing measurements to walls around them. However, when using noisy sensors, additional efforts need to be done to extract a map from the recorded data points.

For this purpose, Altun et al. propose two algorithms for extracting smooth closed curves that compactly represent the environment without gaps. These curves are easier to use and store than the raw data points.

The first method fits active snake contours to the data as can be seen in the image below (left) while the second technique uses a neural network to generate a self-organized feature map of the environment (right). Particle swarm optimization is used to automatically tune the parameters of both algorithms.

In the bottom images, black dots represent the processed ultrasonic data, the blue curve is the curve fitted to this data using active snake contours or self-organized maps and the red curve is ground truth.

Experiments were conducted using the Nomad 200 robot equipped with three front ultrasonic sensors and a structured-light system. The robot was programmed to follow the walls of a small room while mapping the environment.

Results show that active snake contours perform better because they are able to discard outliers in the data and match angles and edges more precisely than the self-organized map.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence