Robohub.org
 

The Utah Bionic Leg: A motorized prosthetic for lower-limb amputees

The Utah Bionic Leg is a motorized prosthetic for lower-limb amputees developed by University of Utah mechanical engineering associate professor Tommaso Lenzi and his students in the HGN Lab.

Lenzi’s Utah Bionic Leg uses motors, processors, and advanced artificial intelligence that all work together to give amputees more power to walk, stand-up, sit-down, and ascend and descend stairs and ramps. The extra power from the prosthesis makes these activities easier and less stressful for amputees, who normally need to over-use their upper body and intact leg to compensate for the lack of assistance from their prescribed prosthetics. The Utah Bionic Leg will help people with amputations, particularly elderly individuals, to walk much longer and attain new levels of mobility.

“If you walk faster, it will walk faster for you and give you more energy. Or it adapts automatically to the height of the steps in a staircase. Or it can help you cross over obstacles,” Lenzi says.

The Utah Bionic Leg uses custom-designed force and torque sensors as well as accelerometers and gyroscopes to help determine the leg’s position in space. Those sensors are connected to a computer processor that translates the sensor inputs into movements of the prosthetic joints. Based on that real-time data, the leg provides power to the motors in the joints to assist in walking, standing up, walking up and down stairs, or maneuvering around obstacles. The leg’s “smart transmission system” connects the electrical motors to the robotic joints of the prosthetic. This optimized system automatically adapts the joint behaviors for each activity, like shifting gears on a bike.

Finally, in addition to the robotic knee joint and robotic ankle joint, the Utah Bionic Leg has a robotic toe joint to provide more stability and comfort while walking. The sensors, processors, motors, transmission system, and robotic joints enable users to control the prosthetic intuitively and continuously, as if it was an intact biological leg.

Details of the leg’s newest technologies are described in a paper published in the journal. The paper was authored by University of Utah mechanical engineering graduate students Minh Tran, Lukas Grabert, Sarah Hood and Lenzi. You can read the paper here.

Lenzi and the university recently forged a new partnership with the worldwide leader in the prosthetics industry, Ottobock, to license the technology behind the Utah Bionic Leg and bring it to individuals with lower-limb amputations.



This article was originally published here.



tags:


The College of Engineering at the University of Utah





Related posts :



Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence