Robohub.org
 

Winners of hurricane-tracking UAS design challenge announced | NASA News


by
09 July 2014



share this:

From a NASA press release:

Virginia Tech's UAS design
A team of students from Virginia Polytechnic Institute and State University (Virginia Tech) in Blacksburg captured first place in NASA’s University Aeronautics Design Challenge with its proposal for the “Gobble Hawk” high-altitude, long-endurance uncrewed aerial system for tracking and collecting data on hurricanes.Image Credit: Virginia Tech

NASA has selected three winning designs solicited to address the technological limitations of the uncrewed aerial systems (UAS) currently used to track and collect data on hurricanes.

Engineering teams at Virginia Polytechnic Institute and State University in Blacksburg, Purdue University in West Lafayette, Indiana, and the University of Virginia (UVA) in Charlottesville were named first- through third-place winners, respectively, of the agency’s 2013-2014 University Aeronautics Engineering Design Challenge.

This year’s challenge called on university students, with faculty advisors, to design a new UAS that can exceed the flight limitations of systems currently used to track and gather data on hurricanes throughout the Atlantic Ocean storm season, which runs June 1 to Nov. 30.

“The data gathered by UAS’s is crucial to refining computer models so we can better predict not just the path of these storms, but also the process of hurricane formation and growth,” explained Craig Nickol, a NASA aerospace engineer and technical lead for the contest at the agency’s Langley Research Center in Hampton, Virginia. “This is where current systems fall short.”

Purdue University's UAS design
Taking second place, the team at Purdue University in West Lafayette, Indiana, designed the OQ451-5 Trident, a hydrogen-powered UAS capable of seven days of uninterrupted flight. Image Credit: Purdue University

Accurate predictions of storm formation and growth require several days of uninterrupted observations and measurements. However, systems now in use to gather storm data, similar to the Global Hawk UAS, have a limited flight endurance of 24 hours per takeoff. Among other stringent criteria, papers submitted for the challenge had to successfully demonstrate how the team’s system design would provide persistent five-month aerial coverage over an area of the Atlantic Ocean off the west coast of Africa where tropical depressions can form into hurricanes. Through this five-month period, systems must be capable of flying non-stop a minimum of seven days.

“The decision process and supporting detail, including cost optimization, were strengths of the top papers,” said aerospace engineer Jason Welstead, a contest reviewer for NASA’s Aeronautics Research Mission Directorate in Washington.

University of Virginia's UAS design
The team at the University of Virginia (UVA) in Charlottesville secured third place with its submission, an aircraft dubbed The Big WAHOO, which has a flight endurance of 7.5 days.Image Credit: University of Virginia

Virginia Tech’s team of nine university seniors won first place with its Gobble Hawk, an aerial system consisting of two aircraft, each with a flight endurance of 7.8 days and using liquid hydrogen as a fuel source. The team estimated the total cost of the system at $199.5 million for production plus 10 years of operation and maintenance.

Taking second place, Purdue’s OQ451-5 Trident is a hydrogen-powered UAS capable of seven days of uninterrupted flight over the monitoring area. Its approximate costs include $310 million for design, $78 million for production and operating costs of about $17,000 per flight hour.

UVA captured third place with its submission, an aircraft dubbed The Big WAHOO – a hat-tip to the school’s unofficial nickname and also an acronym for Worldwide Autonomous Hurricane and Oceanic Observer – has a flight endurance of 7.5 days. The team estimated the operating life of the aircraft to be 15 years, with a total lifecycle cost of about $493.7 million.

For more than a decade, NASA’s unique University Aeronautics Engineering Design Challenge has inspired senior-level engineering students to develop innovative and cost-effective solutions to real problems faced by the global aeronautics community. Eight university teams submitted final entries for the 2014 challenge. The three winning teams will receive a cash award through an education grant and cooperative agreement with Christopher Newport University in Newport News, Virginia.

For more information on NASA’s Aeronautics Research Mission Directorate design challenges and competitions, go to:

http://www.aeronautics.nasa.gov/design_comp.htm



tags: , ,


Hallie Siegel robotics editor-at-large
Hallie Siegel robotics editor-at-large





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence