Robohub.org
 

The Year of CoCoRo Video #37/52: Combined scenario two


by
15 September 2015



share this:

cocoro37The EU-funded Collective Cognitive Robotics (CoCoRo) project has built a swarm of 41 autonomous underwater vehicles (AVs) that show collective cognition. Throughout 2015 – The Year of CooRo – we’ll be uploading a new weekly video detailing the latest stage in its development. This week we’ve once again uploaded two videos. The first is a computer animation of our “combined scenario number two” and the second shows several runs of this scenario.

In a fragmented habitat only one compartment holds the magnetic search target. In every compartment a swarm of Jeff robots searches the ground. Those that find the target inform the Lily robots who disseminate the information to other compartments, moving randomly. When the Jeff robots who did not find the target are informed that other Jeff robots in a different compartment did, they rise up to the surface, perform a random walk and then sink back down into a new compartment. Over time, the swarm converges on the place where the target was found. Upward signalling  by Jeff and Lily robots also attracts the surface station to the location above the search target.

The second video shows several runs of “combined scenario number two.” Jeff robots (on the ground), Lily robots (information carriers at all depths) and a simple surface station (we used a special Lily robot as a surrogate ) cooperate to identify the compartment containing the magnetic search target. The robots perform the same algorithms, or behaviors, in the computer animation. Initially, each one of the four compartments holds one Jeff robot. At the end of the run, three of these robots are located in the compartment with the target, together with a number of Lily robots and the surrogate of the surface station. The remaining Jeff robot could not reach the target compartment for mechanical reasons, although it tried several times, as indicated by the green LED signals it shows from time to time. This is a good example of how things work in swarm robotics; there are always robots that don’t perform well but they do stay functional as a collective.



tags: , , , , , ,


Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.
Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.





Related posts :

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence