Robohub.org
 

#ICRA16 duckies and robots video: Daily life activities


by
10 May 2016



share this:

ICRAduckies

The robotics community have created a series of video tributes that showcase some of the contributions to ICRA, the largest conference in the field of robotics and automation. Episode two features robots that iron garments, use spoons and spatulas to scoop up objects, and, of course, move rubber duckies!

Stay tuned for episode three: Incredible machines


Papers featured in this video:

“Multi-Sensor Surface Analysis for Robotic Ironing”
Yinxiao Li, Xiuhan Hu, Danfei Xu, Yonghao Yue, Eitan Grinspun, Peter K. Allen
(Columbia University)

This robot can effectively iron garments, using a camera to recognize where the wrinkles are. This technique has been successfully tested on pants, shirts, sweaters and fabric.


“Deep Spatial Autoencoders for Visuomotor Learning”
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
(UC Berkeley)

This robot used deep learning to obtain a concise representation of the visual scene from raw image pixels. Using these features, the robot learned hand-eye coordination skills such as using spoons and spatulas to scoop objects and moving duckies to their aquatic habitat.


“An ISO10218-compliant adaptive damping controller for safe Physical Human-Robot Interaction”
Benjamin Navarro, Andrea Cherubini, Aicha Fonte, Robin Passama, Gerard Poisson, and Philippe Fraisse
(PRISME Laboratory, University of Orléans)

This robot can safely perform a collaborative screwing task. The operator uses a touch interface to trigger the different phases of the work.


“Robotic Disease Detection in Greenhouses”
Noa Schor, Avital Bechar, Timea Ignat, Aviv Dombrovsky, Yigal Elad, Sigal Berman
(ABC robotics, Ben-Gurion University of the Negev)

This prototype of disease detection system for greenhouse peppers can lead to improved quality, increased yield, and reduction of pesticide use. The robot is guided by the perception of multiple threats (and occasional ducky visitors).


“Interactive Computational Imaging for Deformable Object Analysis”
Donald G. Dansereau, Surya P. N. Singh, Jurgen Leitner
(Australian Centre for Robotic Vision, Queensland University of Technology)

This robot analyzes the material properties of an object by watching, while gently squeezing. Image filtering and motion amplification allow the method to work with stiff or delicate objects, and those exhibiting little texture.

For more details about these clips, visit the ICRA trailer website.



tags: , , ,


Robohub Editors





Related posts :



Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence