Robohub.org
 

Natural scale caterpillar soft robot is powered and controlled with light


by
19 August 2016



share this:
Caterpillar micro-robot sitting on a finger tip. Credit: Source: FUW

Caterpillar micro-robot sitting on a finger tip.
Credit: Source: FUW

Researchers at the Faculty of Physics at the University of Warsaw, using the liquid crystal elastomer technology, originally developed in the LENS Institute in Florence, demonstrated a bioinspired micro-robot capable of mimicking caterpillar gaits in natural scale. The 15-millimeter long soft robot harvests energy from green light and is controlled by spatially modulated laser beam. Apart from travelling on flat surfaces, it can also climb slopes, squeeze through narrow slits and transport loads.

For decades scientists and engineers have been trying to build robots mimicking different modes of locomotion found in nature. Most of these designs have rigid skeletons and joints driven by electric or pneumatic actuators. In nature, however, a vast number of creatures navigate their habitats using soft bodies — earthworms, snails and larval insects can effectively move in complex environments using different strategies. Up to date, attempts to create soft robots were limited to larger scale (typically tens of centimeters), mainly due to difficulties in power management and remote control.

Liquid Crystalline Elastomers (LCEs) are smart materials that can exhibit large shape change under illumination with visible light. With the recently developed techniques, it is possible to pattern these soft materials into arbitrary three dimensional forms with a pre-defined actuation performance. The light-induced deformation allows a monolithic LCE structure to perform complex actions without numerous discrete actuators.

Researchers from the University of Warsaw with colleagues from LESN (Italy) and Cambridge (UK) have now developed a natural-scale soft caterpillar robot with an opto-mechanical liquid crystalline elastomer monolithic design. The robot body is made of a light sensitive elastomer stripe with patterned molecular alignment. By controlling the travelling deformation pattern the robot mimics different gaits of its natural relatives. It can also walk up a slope, squeeze through a slit and push objects as heavy as ten times its own mass, demonstrating its ability to perform in challenging environments and pointing at potential future applications.

“Designing soft robots calls for a completely new paradigm in their mechanics, power supply and control. We are only beginning to learn from nature and shift our design approaches towards these that emerged in natural evolution,” says Piotr Wasylczyk, head of the Photonic Nanostructure Facility at the Faculty of Physics of the University of Warsaw, Poland, who led the project.

Researchers hope that rethinking materials, fabrication techniques and design strategies should open up new areas of soft robotics in micro- and millimeter length scales, including swimmers (both on-surface and underwater) and even fliers.


Journal reference:

Mikołaj Rogóż, Hao Zeng, Chen Xuan, Diederik Sybolt Wiersma, Piotr Wasylczyk. Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale. Advanced Optical Materials, 2016; DOI:10.1002/adom.201600503

Source:

Science Daily / Faculty of Physics, University of Warsaw

www.sciencedaily.com/releases/2016/08/160818102611.htm



tags: , ,


Robohub Editors





Related posts :



Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.

Robot Talk Episode 96 – Maria Elena Giannaccini

  01 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association