Robohub.org
 

A drone with insect-inspired folding wings


by
03 October 2016



share this:

foldable_drone_resizedWhen designing robots to help in the search for victims after a natural disaster, a number of features are important: robustness, long battery life and ease of transport. With this latest constraint in mind, a team from Floreano Lab, EPFL and NCCR Robotics will present their new drone with insect-inspired folding wings at IROS 2016.

What makes these wings different to previous solutions is the origami techniques used to produce it, creating the perfect folding structure. First, the research team looked for examples from nature which exhibit folding patterns with a high size reduction and one degree of freedom to fold the wing with single and intuitive movement in a short amount of time. Coleopterans (beetles) were found to not only have the perfect wings, but also control wing deployment from the base of the wing, making them easier to artificially replicate.

Through prototyping and modelling, the original coleopteran blueprints were adapted and updated. The artificial crease pattern achieves a significant size reduction. In the stowed configuration the wingspan is 43% and the surface is 26% of the respective dimensions in the deployed configuration. Despite the complexity of the patterns, the wing has a single degree of freedom and can be folded using only one simple movement.

Finding the crease pattern was only one of the issues that the research team hoped to solve. When using paper for origami, the thickness is negligible, however, when creating a wing, a thicker material must be employed in order to sustain the stresses created during flight. The thicker material is accounted for by creating a 3D folding pattern with tiles of different thickness. The addition of compliant and bistable folds made of pre-stretched latex ensures maximum durability and a smooth deployment.

The presented wings are 26g in weight, with dimensions of 115 x 215 x 40 mm when folded and 200 x 500 x 16 mm when deployed, giving 160 cm2 surface area and 989 cm3 volume when folded and 620 cm2 surface area and 1600 cm3 when deployed. The resulting drone has been tested against a comparable rigid wing in a wind-tunnel, and showed only marginally less good performance when considering lift/drag values.

The ability to create a lightweight, durable drone that is capable of being easily transported and quickly deployed moves us not only closer to commonplace use of robots in locating victims after natural disasters, but also in land and space exploration, aeronautics and civil inspections.

Reference:

Dufour, Louis; Owen, Kevin; Mintchev, Stefano; Floreano, Dario, A Drone with Insect-Inspired Folding Wings, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Daejeon, Korea, October 9-14, 2016



tags: , ,


NCCR Robotics





Related posts :



Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence