Robohub.org
 

Robot teams create supply chain to deliver energy to explorer robots


by
22 September 2016



share this:
mobile-robots-robotics

Mobile robots can be used in many applications, they are especially suited for environments that are unreachable or too dangerous for humans. In many cases, these environments have to be explored and mapped before robots can carry on with their mission. Mobile robots are generally limited in their run time and the travel range because they are battery operated. To increase the time robots can work, their batteries can be recharged at docking stations (DSs). Recharging at DSs has the additional advantage of increasing autonomy, reducing the need for human intervention. Nevertheless, robots still have a limited range they can travel before they have to return for recharging. This limits the reachable area by the robots. To overcome this threshold, robots can form teams in which they take on different tasks, allowing some robots to further explore while others form a supply chain to deliver energy to the exploring robots.

There are a number of challenges to solve in this scenario. Firstly, the robots need to be aware of their energy and decide autonomously when to seek a DS or recharger robot. Secondly, exploring robots need to coordinate for deciding which robot is allowed to recharge and where it should recharge. Thirdly, robots need to form teams and coordinate task assignment. All these steps of coordination and scheduling should work in a distributed fashion to make the system adaptive to changes and robust against failures of individual robots.

So far we investigated the first two points and developed coordination strategies. In [1] we present an approach for energy efficient path planning. A robot always calculates the reachable frontiers as well as the distance to the DS. Once there are no more reachable frontiers the robot returns for recharging. This approach makes sure that it fully uses all of its energy without running out of power. In [2] we present a coordination strategy based on market economy for robots to negotiate which robot is allowed to recharge. We also present policies for selecting one of the available DSs and compare their performance in different scenarios.

A short demo and description of the system can be seen in our video:

Christoph Sagmeister, CampusTV Alpen-Adria-Universität


References
[1] M. Rappaport, “Energy-aware mobile robot exploration with adaptive decision thresholds,” in Proc. Int. Symp. on Robotics (ISR), Jun. 2016.
[2] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile robots during exploration,” under review.



tags: ,


Micha Rappaport is a researcher and teaching assistant at the Institute of Networked and Embedded Systems at the Alpen-Adria-Universität Klagenfurt
Micha Rappaport is a researcher and teaching assistant at the Institute of Networked and Embedded Systems at the Alpen-Adria-Universität Klagenfurt





Related posts :



Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence