Robohub.org
 

A drone that flies (almost) like a bird


by
16 December 2016



share this:
Source: École polytechnique fédérale de Lausanne (EPFL)

Source: École polytechnique fédérale de Lausanne (EPFL)

Bioinspired robots that take their designs from biology has been a big research area in recent years, but a team from NCCR RoboticsFloreano Lab have just gone one step further and designed a feathered drone to fully replicate the agile flight of birds.

Small winged drones can experience sudden and extreme variations in aerodynamic conditions, for example from winds or air disturbances coming from passing obstacles or other moving objects. Birds adapt to these changing environmental conditions by changing the shape of their wings. Their feathered wings can quickly change shape mid-flight, for example, folding the outer layer of feathers, a bird significantly reduces the surface area of its wing and the aerodynamic drag allowing high-speed flight.

It is this folding and simple reduction of wing span that the team wished to exploit. By having a wing that can easily change size and shape, a drone can adapt to nippy manoeuvres (larger wing span required), or can reduce its drag at high speeds to fly in strong headwinds (short wing span required).

Birds can dramatically alter the shape and size of their wings because they are composed of an articulated skeleton controlled by muscles and covered with feathers that can overlap. Similarly, the presented drone has a wing equipped with artificial feathers that can be folded to actively change the surface. The wing contains two artificial tendons that can either rotate or straighten the front edge of the wing, thus splaying or storing the feathers. By enabling the drone to reduce its wingspan, the surface area is decreased by 41%, thus significantly reducing drag giving the possibility to fly against strong headwinds. On the other hand, when the wing is fully deployed, the drone can perform turns that are 40% sharper. Since the two foldable wings act independently of each other, the mechanism can also be used to control roll eliminating the need of additional ailerons with advantages in terms of reduced weight and mechanical complexity.

drone-bioinspired-robot-3

This new advent means that the drones of the future may not only manoeuvre like birds, but may also look like them too!

Reference:

M. Di Luca, S. Mintchev, G. Heitz, F. Noca, and D. Floreano, Bio-inspired morphing wings for extended flight envelope and roll control of small drones, Journal of the Royal Society, Interface Focus, 16 December 2016. DOI – http://dx.doi.org/10.1098/rsfs.2016.0092



tags: , , ,


NCCR Robotics





Related posts :



Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.

Robot Talk Episode 134 – Robotics as a hobby, with Kevin McAleer

  21 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kevin McAleer from kevsrobots about how to get started building robots at home.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence