Robohub.org
 

A drone that flies (almost) like a bird

by
16 December 2016



share this:
Source: École polytechnique fédérale de Lausanne (EPFL)

Source: École polytechnique fédérale de Lausanne (EPFL)

Bioinspired robots that take their designs from biology has been a big research area in recent years, but a team from NCCR RoboticsFloreano Lab have just gone one step further and designed a feathered drone to fully replicate the agile flight of birds.

Small winged drones can experience sudden and extreme variations in aerodynamic conditions, for example from winds or air disturbances coming from passing obstacles or other moving objects. Birds adapt to these changing environmental conditions by changing the shape of their wings. Their feathered wings can quickly change shape mid-flight, for example, folding the outer layer of feathers, a bird significantly reduces the surface area of its wing and the aerodynamic drag allowing high-speed flight.

It is this folding and simple reduction of wing span that the team wished to exploit. By having a wing that can easily change size and shape, a drone can adapt to nippy manoeuvres (larger wing span required), or can reduce its drag at high speeds to fly in strong headwinds (short wing span required).

Birds can dramatically alter the shape and size of their wings because they are composed of an articulated skeleton controlled by muscles and covered with feathers that can overlap. Similarly, the presented drone has a wing equipped with artificial feathers that can be folded to actively change the surface. The wing contains two artificial tendons that can either rotate or straighten the front edge of the wing, thus splaying or storing the feathers. By enabling the drone to reduce its wingspan, the surface area is decreased by 41%, thus significantly reducing drag giving the possibility to fly against strong headwinds. On the other hand, when the wing is fully deployed, the drone can perform turns that are 40% sharper. Since the two foldable wings act independently of each other, the mechanism can also be used to control roll eliminating the need of additional ailerons with advantages in terms of reduced weight and mechanical complexity.

drone-bioinspired-robot-3

This new advent means that the drones of the future may not only manoeuvre like birds, but may also look like them too!

Reference:

M. Di Luca, S. Mintchev, G. Heitz, F. Noca, and D. Floreano, Bio-inspired morphing wings for extended flight envelope and roll control of small drones, Journal of the Royal Society, Interface Focus, 16 December 2016. DOI – http://dx.doi.org/10.1098/rsfs.2016.0092



tags: , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association