Robohub.org
 

A drone that flies (almost) like a bird

by
16 December 2016



share this:
Source: École polytechnique fédérale de Lausanne (EPFL)

Source: École polytechnique fédérale de Lausanne (EPFL)

Bioinspired robots that take their designs from biology has been a big research area in recent years, but a team from NCCR RoboticsFloreano Lab have just gone one step further and designed a feathered drone to fully replicate the agile flight of birds.

Small winged drones can experience sudden and extreme variations in aerodynamic conditions, for example from winds or air disturbances coming from passing obstacles or other moving objects. Birds adapt to these changing environmental conditions by changing the shape of their wings. Their feathered wings can quickly change shape mid-flight, for example, folding the outer layer of feathers, a bird significantly reduces the surface area of its wing and the aerodynamic drag allowing high-speed flight.

It is this folding and simple reduction of wing span that the team wished to exploit. By having a wing that can easily change size and shape, a drone can adapt to nippy manoeuvres (larger wing span required), or can reduce its drag at high speeds to fly in strong headwinds (short wing span required).

Birds can dramatically alter the shape and size of their wings because they are composed of an articulated skeleton controlled by muscles and covered with feathers that can overlap. Similarly, the presented drone has a wing equipped with artificial feathers that can be folded to actively change the surface. The wing contains two artificial tendons that can either rotate or straighten the front edge of the wing, thus splaying or storing the feathers. By enabling the drone to reduce its wingspan, the surface area is decreased by 41%, thus significantly reducing drag giving the possibility to fly against strong headwinds. On the other hand, when the wing is fully deployed, the drone can perform turns that are 40% sharper. Since the two foldable wings act independently of each other, the mechanism can also be used to control roll eliminating the need of additional ailerons with advantages in terms of reduced weight and mechanical complexity.

drone-bioinspired-robot-3

This new advent means that the drones of the future may not only manoeuvre like birds, but may also look like them too!

Reference:

M. Di Luca, S. Mintchev, G. Heitz, F. Noca, and D. Floreano, Bio-inspired morphing wings for extended flight envelope and roll control of small drones, Journal of the Royal Society, Interface Focus, 16 December 2016. DOI – http://dx.doi.org/10.1098/rsfs.2016.0092



tags: , , , , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 42 – Thom Kirwan-Evans

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Thom Kirwan-Evans from Origami Labs all about computer vision, machine learning, and robots in industry.
25 March 2023, by

Resilient bug-sized robots keep flying even after wing damage

New repair techniques enable microscale robots to recover flight performance after suffering severe damage to the artificial muscles that power their wings.
23 March 2023, by

How drones for organ transportation are changing the healthcare industry

The healthcare drone industry has witnessed a dramatic surge in the last couple of years. In 2020, the market grew 30% and is expected to grow from $254 million in 2021 to $1,5 billion in 2028.
21 March 2023, by

Robotic bees and roots offer hope of healthier environment and sufficient food

Miniature robots that mimic living organisms are being developed to explore and support real-life ecosystems.
18 March 2023, by

Robot Talk Episode 41 – Alessandra Rossi

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Alessandra Rossi from the University of Naples all about social robotics, theory of mind, and robots playing football.
17 March 2023, by

Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots

Robotic parts could be assembled into nimble spider bots for exploring lava tubes or heavy-duty elephant bots for transporting solar panels.
14 March 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association