Robohub.org
 

A new versatile gripper with electroadhesion

by
11 November 2015



share this:
gripper_NCCR

From early childhood, when a person picks up an object using their hands they use haptic feedback to automatically adjust the force of their grip according to the object they are lifting. A completely different grip is required when holding a soft piece of fruit or a glass ornament – both very delicate in their own ways. Your body will automatically adjust to the appropriate grip by sensing small shear movements and exploiting the natural compliance of the soft, fleshy pads of your finger tips to do so. Equipping robotic grippers with this level of compliance and versatility has long been a problem, but in a paper published in Advanced Materials, a team from LMTS and LIS, EPFL and NCCR Robotics proposes a solution with a simple control input that has been used to pick up diverse objects including a raw chicken egg, a water balloon and a flat piece of paper.

While most robotic grippers are designed for the type of object they will pick up, the versatility of this two-fingered version comes from its ability to maximise electroadhesion and electrostatic actuation while allowing self-sensing through newly designed bending dielectric elastomer actuators (DEAs). Electroadhesion force alternates holding force to pick up heavier objects, and minimises required mechanical grasping force generated from electrostatic actuation, allowing the gripper to handle very fragile and deformable objects and a wide variety of shapes.

Soft gripperThe key novelty that allows this new gripper to behave differently is the arrangement of electrodes within the DEA. Traditionally, DEAs function through a thin elastomer membrane sandwiched between two highly compliant, uniform parallel electrodes. When a voltage is applied across the membrane the opposing charges on the electrodes generate electrostatic pressure, which in turn leads to thickness reduction and area expansion, resulting in bending actuation.

For DEA actuation, electric fields inside the membrane normal to the surface are usually the only ones considered, but not the only ones produced: Fringe electrical fields are created at the electrode edge, which can bring about electroadhesion in nearby objects.

soft gripper with egg for scaleIn order to exploit the electroadhesion and the electrostatic actuation of the DEA, four compliant electrodes are interwoven in a way that causes adjacent electrode segments on the same planar surface to orientate with the opposite polarity nearest. Thus, when a voltage is applied, the fringe electric fields are experienced across the whole DEA, rather than just at the edges, leading to electroactuation forces being increased tenfold.

The simple structure of the gripper means that it is lightweight (approx. 1.5g), fast functioning (approx. 100ms to close the fingers), and has a design flexibility for potential applications such as small transportation drones, the food industry and medical robotics.

References

J. Shintake, S. Rosset, B. Schubert, D. Floreano and H. Shea, “Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators,” Advanced Materials, 2015. doi:10.1002/adma.201504264

All photographs courtesy of Alain Herzog and NCCR Robotics.



tags: , ,


NCCR Robotics





Related posts :



Robot Talk Episode 98 – Gabriella Pizzuto

In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.
15 November 2024, by

Online hands-on science communication training – sign up here!

Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.
13 November 2024, by

Robot Talk Episode 97 – Pratap Tokekar

In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.
08 November 2024, by

Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association