Robohub.org
 

AI-powered robots help tackle Europe’s growing e-waste problem


by
12 May 2025



share this:

Photo credit: Muntaka Chasant, reproduced under a CC BY-SA 4.0 license.

By Kaja Šeruga

Just outside the historic German town of Goslar, a sprawling industrial complex receives an endless stream of discarded electronics. On arrival, this electronic waste is laboriously prepared for recycling. 

Electrocycling GmbH is one of the largest e-waste recycling facilities in Europe. Every year, it processes up to 80 000 tonnes of electronic waste, which comes in all shapes and forms.

Manual dismantling

Despite an impressive array of machinery, more than half of the site’s employees manually prepare the discarded items for recycling. They do this by sorting the incoming waste and removing batteries, which are a fire hazard and a major challenge in e-waste recycling.

“There are more and more devices, they are getting smaller, and they all contain lithium batteries, some of which are permanently installed, soldered or glued in place,” said Hannes Fröhlich, Electrocycling’s managing director. 

“It’s not a dream job, dismantling these appliances every day with hammers and pliers. I think we can do better.”

Some of these tedious tasks could be performed by robots. However, the problem is that every time there is a change in the product or the process, the hardware and software need to be restructured. This can be costly and time-consuming.

To address this issue, an EU-funded research initiative named ReconCycle has managed to automate the process by creating robots that can reconfigure themselves for different tasks. 

New territory for robotics

Researchers from Slovenia, Germany and Italy worked together on this issue at the Jožef Stefan Institute, Slovenia’s leading research facility, from 2020 to 2024.

The team developed adaptable AI-supported robots that are able to remove batteries from smoke detectors and radiator heat metres.

These two products can be found in most households and are replaced every five to eight years, creating large amounts of waste.

“The main challenge is that there are so many different versions of each device. Just think how many different remote controls there are,” said Dr Aleš Ude. He is head of the Department of Automatics, Biocybernetics and Robotics at the Jožef Stefan Institute and coordinates the ReconCycle research team. 

In industrial settings, robots are usually programmed for one specific task, repeating exactly the same series of movements in a predictable environment. 

Instead, the researchers set out to create a robot that can adapt to many different tasks, using state-of-the-art AI. 

“We wanted to expand robotics, introduce robots where there aren’t any yet,” Ude said.

A growing problem

Working with Electrocycling, Ude’s international research team created an adaptable robotic work cell. This is a workspace that consists of at least one robot, its tools and equipment, and its controller.

The novelty here is that this closed system autonomously adapts itself to various tasks, with the help of complex AI-driven software and modular hardware that can be quickly reconfigured. It also uses soft components like SoftHand, a human-like hand that can manipulate objects with great precision.

There are also safety features like collaborative robots and emergency stop buttons.

International collaboration was crucial in securing the right expertise, said Ude. 

“Robotics is very interdisciplinary, so it’s difficult to find the right partners in one country.” 

Thankfully, the new robots are arriving just at the right time, as the amount of e-waste produced every year continues to grow. Almost 5 million tonnes of e-waste are produced in the EU each year, amounting to about 11 kilograms per person. Less than 40% of that is recycled, the European Parliament has warned. 

Globally, around 62 million tonnes of e-waste were produced in 2022 alone, enough to fill 1.5 million 40-tonne trucks, according to UN data. Even more worryingly, the amount of e-waste is rising five times faster than the amount that is being recycled.

The EU is working to reduce e-waste through the Waste from Electrical and Electronic Equipment Directive, which sets the standards for collection and recycling. 

The work of Ude’s team is also aligned with the EU’s digital strategy, which encourages the use of AI in manufacturing to improve efficiency and help achieve climate neutrality by 2050.

Throwing away money

E-waste also has serious economic implications. An estimated €84 billion is lost each year when valuable metals like copper, iron and gold are discarded instead of being reused, according to the UN’s global e-waste monitor. 

At Electrocycling, 80% of the e-waste is recovered as raw materials, such as iron, zinc, gold, silver and palladium – some 35 materials in all.

“People need to understand that this is not just waste, but also raw materials that need to be recycled and kept in circulation, both for economic efficiency and a reduction of CO2,” said Fröhlich. 

New technology can make it even more efficient, and Fröhlich sees a lot of potential in it. 

“I was surprised by how far the technology and AI have already come,” he said. “They even recreated a human hand for the robot.”

Ude hopes to continue working with Electrocycling to improve e-waste solutions further. The hope is also that adaptable robots which can handle changing environments will have applications far beyond e-waste recycling. 

Given more time and development, these robots could even handle general housekeeping, or support carers in senior homes, said Ude. 

“Robotics could be of great help in such areas.”

This article was originally published in Horizon, the EU Research and Innovation magazine.




Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.
Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.





Related posts :



RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence