Robohub.org
 

Applying direct transcription methods to robot motion planning

by
08 March 2016



share this:
Source: ADRLabETH/youtube

Hardware experiments on motion planning for the the ballbot Rezero using direct transcription. Source: ADRLab ETH/youtube

When you walk across a room or down a path, your brain is making thousands of decisions on how best to move. For example, how best to use your weight, scanning for any obstacles or uneven surfaces, and how rigid (or soft) your limbs and joints should be. Teaching a robot to conduct the same decision-making process is ongoing in robotics, and a team from ADRL, ETH Zurich and NCCR Robotics is studying existing direct transcription methods for trajectory optimization applied to robot motion planning.

Rezero, the dancing ballbot

Rezero, the dancing ballbot. Source: ETH Zurich.

Using a method of control called direct transcription (where complex mathematical problems are broken down into smaller problems and each solved individually), the team uses direct transcription to enable an unstable ball-balancing robot to perform a series of tasks with increasing complexity. The common issue with direct optimisation methods, which are used to allow the robots to obtain more natural movements, is that they require computers to continuously run multiple algorithms at once, meaning that planning a path in real time, like the human brain does, has not yet been achieved. Simply put, the computers working online with a robot are nowhere near as fast, efficient and robust as your brain, and that’s before considering how heavy such a computer might need to be, or how much bandwidth this communication requires.

First, by using computer models, the team tested the unstable ball balancing robot (see video below) with three variations of a simple task where the robot had to move from one location to another while avoiding fixed obstacles. By allowing the robot to use the best solution it found for previous tasks, coupled with a feedback controller to stabilise the system, the simulated robot was able to find a path through two obstacles in under a second. When using the real robot, the same paths and trajectories were followed, with the robot reaching the planned destination safely and in the same period of time as the virtual robot, thus validating the hypothesis.

The speed with which the robot is able to assess its scenario and follow a path that it has decided for itself without falling is a positive step forward that can be transported onto more complex robots (such as quadrupedal robots) in more uneven environments.

If a quadrupedal robot, such as HyQ or StarlETH, are able to understand obstacles in its path and successfully avoid or modify a movement to accommodate, such as softening joints when walking over rocks, then robots have made one step further towards regularly being sent to disaster zones to locate victims and save more lives.

Reference: 
D. Pardo, L. Möller, M. Neunert, A. W. Winkler and J. Buchli, “Evaluating direct transcription and nonlinear optimization methods for robot motion planning”, IEEE RA-L, 2016.


tags: , , ,


NCCR Robotics





Related posts :



ep.

339

podcast

High Capacity Ride Sharing, with Alex Wallar

Robohub Podcast · Public Transit https://www.youtube.com/watch?v=vgstBxWFFZQ [space] In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. ...
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by

Sense Think Act Podcast: Melonee Wise

In this episode, Audrow Nash speaks with Melonee Wise, former CEO of Fetch Robotics and current VP of Robotics Automation at Zebra Technologies. Melonee speaks about the origin of Fetch Robotics, her ...
11 October 2021, by and

Online events to look out for on Ada Lovelace Day 2021

On the 12th of October, the world will celebrate Ada Lovelace Day to honor the achievements of women in science, technology, engineering and maths (STEM). After a successful worldwide online celebrati...
10 October 2021, by

Flying high-speed drones into the unknown with AI

When it comes to exploring complex and unknown environments such as forests, buildings or caves, drones are hard to beat. They are fast, agile and small, and they can carry sensors and payloads virtua...
08 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association