Robohub.org
 

Complete force control in constrained under-actuated mechanical systems: Lecture by Francesco Nori

iCub-balancing_Nori

In this video lecture, Franceso Nori from the Italian Institute of Technology (IIT) walks us through the progress that’s been made in humanoid robots in recent years. For example, the humanoids at the DARPA Robotics Challenge disaster scenarios will be required to open several doors to access the disaster scene, but because they are not especially fast and have motor control limitations, they won’t be able do it as efficiently as a real-world situation would require.

To tackle these limitations, Nori focuses on finding ways to advance the dynamic system of a robot – the forces that interact and make the system move. Key to developing dynamic movements in a robot is control, accompanied by the way the robot interacts with the environment. Nori talks us through the latest developments, designs and formulas for floating-base/constrained mechanical systems, whole-body motion control of humanoid systems, whole-body dynamics computation on the iCub humanoid, and finishes with a video on recent implementations of whole-body motion control on the iCub.

Download the full presentation here.


Francesco_NoriFrancesco Nori received his D.Ing. degree (highest honors) from the University of Padova (Italy), in 2002. He obtained his Ph.D. in Control and Dynamical Systems from the the same university in 2005. In 2007, he joined the Istituto Italiano di Tecnologia (Italian Institute of Technology), contributing significantly to the development of the iCub humanoid robot. His research interests are currently focused on whole-body motion control exploiting multiple (possibly compliant) contacts. With Giorgio Metta and Lorenzo Natale, he is one of the key researchers involved in the iCub development, with specific focus on control and whole-body force regulation. Francesco is currently involved in two FP7-EU projects: CoDyCo as coordinator and Koroibot as principal investigator. In the past he was also an investigator in ITALK, VIACTORS and Robotcub.


Nori F. IJARS Video Series: Complete Force Control in Under-actuated but Constrained Mechanical Systems [online video]. International Journal of Advanced Robotic Systems, 2015, 12:V2. DOI: 10.5772/60571


If you liked this lecture, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , ,


International Journal of Advanced Robotic Systems (IJARS) is the first Open Access robotics journal in the Science, Technology and Medicine field.
International Journal of Advanced Robotic Systems (IJARS) is the first Open Access robotics journal in the Science, Technology and Medicine field.





Related posts :



Ranking the best humanoid robots of 2023

Is Rosie the Robot Maid from the Jetsons here yet? As more and more companies announce their work towards the affordable humanoid robot, I wanted to create a reference chart.
03 June 2023, by

Robot Talk Episode 51 – James Kell

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to James Kell from Jacobs Engineering UK all about civil infrastructure, nuclear robotics and jet engine inspection.
02 June 2023, by

Automate 2023 recap and the receding horizon problem

“Thirty million developers” are the answer to driving billion-dollar robot startups, exclaimed Eliot Horowitz of Viam last week at Automate.
01 June 2023, by

We are pleased to announce our 3rd Reddit Robotics Showcase!

The 2021 and 2022 events showcased a multitude of fantastic projects from the r/Robotics Reddit community, as well as academia and industry. This year’s event features many wonderful robots including...
30 May 2023, by

European Robotics Forum 2023 was a success!

One of the highlights of the conference for us was our workshop "Supporting SMEs in Bringing Robotics Solutions to Market", where experts gave insights on how DIHs can create a greater impact for SMEs and facilitate a broad uptake and integration of robotics technologies in the industry.
28 May 2023, by

Helping robots handle fluids

Researchers create a new simulation tool for robots to manipulate complex fluids in a step toward helping them more effortlessly assist with daily tasks.
27 May 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association