Robohub.org
 

Complete force control in constrained under-actuated mechanical systems: Lecture by Francesco Nori

iCub-balancing_Nori

In this video lecture, Franceso Nori from the Italian Institute of Technology (IIT) walks us through the progress that’s been made in humanoid robots in recent years. For example, the humanoids at the DARPA Robotics Challenge disaster scenarios will be required to open several doors to access the disaster scene, but because they are not especially fast and have motor control limitations, they won’t be able do it as efficiently as a real-world situation would require.

To tackle these limitations, Nori focuses on finding ways to advance the dynamic system of a robot – the forces that interact and make the system move. Key to developing dynamic movements in a robot is control, accompanied by the way the robot interacts with the environment. Nori talks us through the latest developments, designs and formulas for floating-base/constrained mechanical systems, whole-body motion control of humanoid systems, whole-body dynamics computation on the iCub humanoid, and finishes with a video on recent implementations of whole-body motion control on the iCub.

Download the full presentation here.


Francesco_NoriFrancesco Nori received his D.Ing. degree (highest honors) from the University of Padova (Italy), in 2002. He obtained his Ph.D. in Control and Dynamical Systems from the the same university in 2005. In 2007, he joined the Istituto Italiano di Tecnologia (Italian Institute of Technology), contributing significantly to the development of the iCub humanoid robot. His research interests are currently focused on whole-body motion control exploiting multiple (possibly compliant) contacts. With Giorgio Metta and Lorenzo Natale, he is one of the key researchers involved in the iCub development, with specific focus on control and whole-body force regulation. Francesco is currently involved in two FP7-EU projects: CoDyCo as coordinator and Koroibot as principal investigator. In the past he was also an investigator in ITALK, VIACTORS and Robotcub.


Nori F. IJARS Video Series: Complete Force Control in Under-actuated but Constrained Mechanical Systems [online video]. International Journal of Advanced Robotic Systems, 2015, 12:V2. DOI: 10.5772/60571


If you liked this lecture, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , ,


International Journal of Advanced Robotic Systems (IJARS) is the first Open Access robotics journal in the Science, Technology and Medicine field.
International Journal of Advanced Robotic Systems (IJARS) is the first Open Access robotics journal in the Science, Technology and Medicine field.





Related posts :



#RoboCup2024 – daily digest: 21 July

In the last of our digests, we report on the closing day of competitions in Eindhoven.
21 July 2024, by and

#RoboCup2024 – daily digest: 20 July

In the second of our daily round-ups, we bring you a taste of the action from Eindhoven.
20 July 2024, by and

#RoboCup2024 – daily digest: 19 July

Welcome to the first of our daily round-ups from RoboCup2024 in Eindhoven.
19 July 2024, by and

Robot Talk Episode 90 – Robotically Augmented People

In this special live recording at the Victoria and Albert Museum, Claire chatted to Milia Helena Hasbani, Benjamin Metcalfe, and Dani Clode about robotic prosthetics and human augmentation.
21 June 2024, by

Robot Talk Episode 89 – Simone Schuerle

In the latest episode of the Robot Talk podcast, Claire chatted to Simone Schuerle from ETH Zürich all about microrobots, medicine and science.
14 June 2024, by

Robot Talk Episode 88 – Lord Ara Darzi

In the latest episode of the Robot Talk podcast, Claire chatted to Lord Ara Darzi from Imperial College London all about robotic surgery - past, present and future.
07 June 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association