Robohub.org
 

Eight lessons for robotics startups from NRI PI workshop


by
14 March 2021



share this:

Research is all about being the first, but commercialization is all about repeatability, not just many times but every single time. This was one of the key takeaways from the Transitioning Research From Academia to Industry panel during the National Robotics Initiative Foundational Research in Robotics PI Meeting on March 10 2021. I had the pleasure of moderating a discussion between Lael Odhner, Co-Founder of RightHand Robotics, Andrea Thomaz, Co-Founder/CEO of Diligent Robotics and Assoc Prof at UTexas Austin, and Kel Guerin, Co-Founder/CIO of READY Robotics.

RightHand Robotics, Diligent Robotics and READY Robotics are young robotics startups that have all transitioned from the ICorps program and SBIR grant funding into becoming venture backed robotics startups. RightHand Robotics was founded in 2014 and is a Boston based company that specializes in robotics manipulation. It is spun out of work performed for the DARPA Autonomous Robotics Manipulation program and has since raised more than $34.3 million from investors that include Maniv Mobility, Playground and Menlo Ventures.

Diligent Robotics is based in Austin where they design and build robots like Moxi that assist clinical staff with routine activities so they can focus on caring for patients. Diligent Robotics is the youngest startup, founded in 2017 and having raised $15.8 million so far from investors that include True Ventures and Ubiquity Ventures. Andrea Thomaz maintains her position at UTexas Austin but has taken leave to focus on Diligent Robotics.

READY Robotics creates unique solutions that remove the barriers faced by small manufacturers when adopting robotic automation. Founded in 2016, and headquartered in Columbus, Ohio, the company has raised more than $41.8 million with investors that include Drive Capital and Canaan Capital. READY Robotics enables manufacturers to more easily deploy robots to the factory floor through a patented technology platform that combines a very easy to use programming interface and plug’n’play hardware. This enables small to medium sized manufacturers to be more competitive through the use of industrial robots.

To summarize the conversation into 8 key takeaways for startups.

  1. Research is primarily involved in developing a prototype (works once), whereas commercialization requires a product (works every time). Robustness and reliability are essential features of whatever you build.
  2. The customer development focus of the ICorps program speeds up the commercialization process, by forcing you into the field to talk face to face with potential customers and deeply explore their issues.
  3. Don’t lead with the robot! Get comfortable talking to people and learn to speak the language your customers use. Your job is to solve their problem, not persuade them to use your technology.
  4. The faster you can deeply embed yourself with your first customers, the faster you attain the critical knowledge that lets you define your product’s essential features, that the majority of your customers will need, from the merely ‘nice to have’ features or ‘one off’ ideas that can be misdirection.
  5. Team building is your biggest challenge, as many roles you will need to hire for are outside of your own experience. Conduct preparatory interviews with experts in an area that you don’t know, so that you learn what real expertize looks like, what questions to ask and what skillsets to look for.
  6. There is a lack of robotics skill sets in the marketplace so learn to look for transferable skills from other disciplines.
  7. It is actually easy to get to ‘yes’, but the real trick is knowing when to say ‘no’. In other words, don’t create or agree to bad contracts or term sheets, just for the sake of getting an agreement, considering it a ‘loss leader’. Focus on the agreements that make repeatable business sense for your company.
  8. Utilize the resources of your university, the accelerators, alumni funds, tech transfer departments, laboratories, experts and testing facilities.

And for robotics startups that don’t have immediate access to universities, then robotics clusters can provide similar assistance. From large clusters like RoboValley in Odense, MassRobotics in Boston and Silicon Valley Robotics which have startup programs, space and prototyping equipment, to smaller robotics clusters that can still provide a connection point to other resources.

 



tags: , ,


Silicon Valley Robotics is an industry association supporting innovation and commercialization of robotics technologies.
Silicon Valley Robotics is an industry association supporting innovation and commercialization of robotics technologies.





Related posts :



AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence