Robohub.org
 

Flying Ring robot can fly on its side

by
09 August 2016



share this:
The Flying Ring in action. Source: Rajan Gill/YouTube

The Flying Ring in action. Source: Rajan Gill/YouTube

The Flying Ring is a new flying vehicle being developed at the Institute for Dynamic Systems and Control, ETH Zurich. The goal of the project is to fully characterize all aerodynamic properties of the vehicle. While traditional quadcopters are agile and carry high payloads they are not efficient in forward flight, with traditional lift to drag ratios comparable to a fruit fly. The Flying Ring vehicle, however, can fly on its side, allowing the blades to propel it forward faster than a typical quadcopter.

The video depicts the first prototype flying tethered. The annular wing (or ring) has a flat airfoil shape, which also covers the propellers and enhances human safety. These autonomous controlled flights help extract aerodynamic properties of the vehicle. A lift to drag ratio (which is a metric for aerodynamic efficiency) of 12 is achieved for the ring only. The total vehicle lift to drag ratio is lower, but can be substantially improved upon with an optimized design. Further details will be submitted to a future conference or research journal.

Why is the Flying Ring tethered? Flying tethered is an important part of the test, as it is used to characterize the steady state operating conditions at various flight speeds in a tight space, namely:

  • Thrust of the propeller in forward flight
  • Analysing annular wing lift and drag
  • Evaluating body drag

In terms of structure, the vehicle is a standard quadrotor configuration. It has depron foam sheet attached via zip ties to the four motor mount arms, with black carbon slab wrapped around the foam.

Solidworks render of the vehicle, Flying Ring. Photo credit: Rajan Gill

Solidworks render of the vehicle, Flying Ring. Photo credit: Rajan Gill

Links to other videos shown:
Quadrotor pole acrobatics
Cooperative quadrotor ball throwing and catching
Onboard quadrocopter failsafe: flight after actuator failure
Flying Robots, Builders of tomorrow

Researchers
Rajan Gill and Raffaello D’Andrea
Institute for Dynamic Systems and Control (IDSC), ETH Zurich, Switzerland
ETH Zurich, Flying Machine Arena

Acknowledgments
This work is supported by and builds upon prior contributions by numerous collaborators in the Flying Machine Arena project.

This research was funded in part by the National Research Council of Canada (NSERC) and the Swiss National Science Foundation (SNSF).


If you enjoyed this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , ,


Rajan Gill is currently a Ph.D. candidate at the Swiss Federal Institute of Technology in Zurich (ETH Zurich) in the area of design and control of flying vehicles.
Rajan Gill is currently a Ph.D. candidate at the Swiss Federal Institute of Technology in Zurich (ETH Zurich) in the area of design and control of flying vehicles.





Related posts :



IEEE 17th International Conference on Automation Science and Engineering paper awards (with videos)

The IEEE International Conference on Automation Science and Engineering (CASE) is the flagship automation conference of the IEEE Robotics and Automation Society and constitutes the primary forum for c...
ep.

340

podcast

NVIDIA and ROS Teaming Up To Accelerate Robotics Development, with Amit Goel

Amit Goel, Director of Product Management for Autonomous Machines at NVIDIA, discusses the new collaboration between Open Robotics and NVIDIA. The collaboration will dramatically improve the way ROS and NVIDIA's line of products such as Isaac SIM and the Jetson line of embedded boards operate together.
23 October 2021, by

One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association