Robohub.org
 

Grasping with robots – which object is in reach?


by
17 August 2014



share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

Imagine a robot reaching for a mug on the table, only to realize that it is too far, or that it would need to bend its arm joint backwards to get there. Understanding which objects are within reach and how to grasp them is an essential requirement if robots are to operate in our everyday environments. To solve this problem, a recent Autonomous Robots paper by Vahrenkamp et al. proposes a new approach to build a comprehensive representation of the capabilities of a robot related to reaching and grasping.

The “manipulability” representation shown below allows the robot to know where it can reach in 6D with its right arm. That means it knows which x,y,z positions it can reach, as well as the orientation of the robot hand that is best for manipulation. The representation takes into account constraints due to joints in the arm. The manipulability is encoded by color (blue: low, red: high).

armar4_rightarm6

A cut through one of these vector clouds looks like this.

manip_armar2

In addition to single handed grasping, the authors discuss how the approach can be extended to grasping with two arms. Experiments were run in simulation on the humanoid robots ARMAR-III and ARMAR-IV.

And in case you want to try this at home, there is an open source version of this work here.

For more information, you can read the paper Representing the robot’s workspace through constrained manipulability analysis (Nikolaus Vahrenkamp and Tamim Asfour, Autonomous Robots – Springer US, July 2014) or ask questions below!



tags:


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).





Related posts :



CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence