Robohub.org
 

Growing healthy resilient biological tissues on humanoid robots


by
12 May 2017



share this:

Musculoskeletal robots may one day assist the growth of replacement tissue grafts for transplant patients.


Researchers at the University of Oxford are beginning to investigate a potentially groundbreaking method for replacing damaged musculoskeletal tissues (such as muscle, tendons and ligaments), which remain unmet needs in regenerative medicine. The proposed approach, which involves growing tissue grafts directly on humanoid musculoskeletal robots, could result in healthier, stronger tissue prior to transplantation on a patient.

Tissue engineering aims to produce biological tissue in vitro by a combination of cells, scaffolds, or matrices to support new tissue growth and bioreactors. Bioreactors are growth chambers where tissue constructs are grown and provide some form of mechanical stimulation. Mechanical stimulation in vitro needs to closely mimic normal stresses experienced in the body – twists and strains – to produce functional tissues, which is needed for cellular development. However, most bioreactors in operation remain unsophisticated with regard to the way they replicate those stresses.

Musculoskeletal humanoid robots, which aim to copy human joints, provide better range of motion and multiple degrees of freedom compared to the linear actuators used in basic bioreactors. They could provide realistic physical exercises for nurturing growing tendons, ligaments, and even cartilage. Researchers could then monitor how tissue is forming through the use of various sensors embedded in the humanoid bioreactor system.

Dr Pierre-Alexis Mouthuy of the Oxford Musculoskeletal Biomedical Research Unit, who is leading the study in collaboration with Professor Andrew Carr, said: “The nature of this research is to combine tissue engineering strategies and state-of-the-art robotics systems, in particular, musculoskeletal humanoid robots.”

“Existing tissue engineering bioreactors mostly subject constructs to uniaxial stresses, such as tension or compression. However, these stresses experienced poorly represent what they would undergo in vivo, as movements are involved with three-dimensions. This may prevent achieving the right phenotype and form the right extracellular matrix, resulting in engineered constructs that may lack functionality. Improved bioreactor systems are needed.”

Ineffective tissue transplants pose economic, social, and health problems with musculoskeletal tissue disorders and injuries becoming a growing concern among ageing populations—pain and lack of mobility being the two most common problems due to tissue failure. Further exploration may lead to future cross-disciplinary applications in medicine and robotics.

The full paper, Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine?,’ can be read in the journal Science Robotics.


If you liked this article, you can read more about health and robotics below:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags:


Kassie Perlongo Kassie is the Managing Editor at Robohub.
Kassie Perlongo Kassie is the Managing Editor at Robohub.





Related posts :



Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.

Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association