Robohub.org
 

Growing healthy resilient biological tissues on humanoid robots


by
12 May 2017



share this:

Musculoskeletal robots may one day assist the growth of replacement tissue grafts for transplant patients.


Researchers at the University of Oxford are beginning to investigate a potentially groundbreaking method for replacing damaged musculoskeletal tissues (such as muscle, tendons and ligaments), which remain unmet needs in regenerative medicine. The proposed approach, which involves growing tissue grafts directly on humanoid musculoskeletal robots, could result in healthier, stronger tissue prior to transplantation on a patient.

Tissue engineering aims to produce biological tissue in vitro by a combination of cells, scaffolds, or matrices to support new tissue growth and bioreactors. Bioreactors are growth chambers where tissue constructs are grown and provide some form of mechanical stimulation. Mechanical stimulation in vitro needs to closely mimic normal stresses experienced in the body – twists and strains – to produce functional tissues, which is needed for cellular development. However, most bioreactors in operation remain unsophisticated with regard to the way they replicate those stresses.

Musculoskeletal humanoid robots, which aim to copy human joints, provide better range of motion and multiple degrees of freedom compared to the linear actuators used in basic bioreactors. They could provide realistic physical exercises for nurturing growing tendons, ligaments, and even cartilage. Researchers could then monitor how tissue is forming through the use of various sensors embedded in the humanoid bioreactor system.

Dr Pierre-Alexis Mouthuy of the Oxford Musculoskeletal Biomedical Research Unit, who is leading the study in collaboration with Professor Andrew Carr, said: “The nature of this research is to combine tissue engineering strategies and state-of-the-art robotics systems, in particular, musculoskeletal humanoid robots.”

“Existing tissue engineering bioreactors mostly subject constructs to uniaxial stresses, such as tension or compression. However, these stresses experienced poorly represent what they would undergo in vivo, as movements are involved with three-dimensions. This may prevent achieving the right phenotype and form the right extracellular matrix, resulting in engineered constructs that may lack functionality. Improved bioreactor systems are needed.”

Ineffective tissue transplants pose economic, social, and health problems with musculoskeletal tissue disorders and injuries becoming a growing concern among ageing populations—pain and lack of mobility being the two most common problems due to tissue failure. Further exploration may lead to future cross-disciplinary applications in medicine and robotics.

The full paper, Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine?,’ can be read in the journal Science Robotics.


If you liked this article, you can read more about health and robotics below:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags:


Kassie Perlongo Kassie is the Managing Editor at Robohub.
Kassie Perlongo Kassie is the Managing Editor at Robohub.





Related posts :



Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.

Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence