Robohub.org
 

Into the deep: Underwater machines keep an eye on climate change

by
26 January 2017



share this:
Image courtesy of FIXO3

Image courtesy of FIXO3

The shells on crustaceans and molluscs off the Norwegian Atlantic coast are not as thick as they once were. This is because of ocean acidification, where increased carbon dioxide (CO2) in the atmosphere is absorbed by water, which raises its acidity. Researchers on the EU-funded FixO3 project, which finishes in 2017, are able to keep track of the growing CO2 and rising acidity levels in the water where these creatures live thanks to a device in the Norwegian Sea which collects data round the clock from as deep as 2 000 metres.


Image courtesy of EMSO

Image courtesy of EMSO

Similar tools are being set up all around Europe as part of the European Multidisciplinary Seafloor and water-column Observatory (EMSO), which is part of the EU’s centrally coordinated research infrastructures, to measure how human activities affect our oceans and worsen climate change. As well as providing food and producing oxygen through the organisms that live within them, our oceans and seas regulate our climate by transporting warm water from the equator to the poles and cold water in the other direction. Researchers are using sophisticated machines to track how our oceans are changing, from small cameras that can record high-definition videos of the ocean floor, to others that can detect earthquakes, measure temperature and pressure, and record sounds.


Image courtesy of EMSO

Image courtesy of EMSO

Data is transmitted from machines at the bottom of the ocean either through fibre optic cables or via buoys on the surface, which are linked to satellites. Scientists on land can then track this data, either in real time or with a delay depending on the system, and monitor pollution, climate change and even tsunamis over time. While the machines do require regular maintenance, it means that researchers are able to study the long-term health of our oceans while cutting down on costly expeditions.


Image courtesy of EMSO

Image courtesy of EMSO

Some of the findings to come out of these observatories are expected to be included in future reports by the UN’s influential Intergovernmental Panel on Climate Change. EMSO’s tools, such as one monitoring seismic activity and pressure on hydrothermal vents in the Mid-Atlantic Ridge, will also help the EU know if it has reached its goals of improving the health of Europe’s seas by 2020, as set out in the EU’s Marine Directive. EMSO is also the European counterpart of initiatives in the US, Japan, China, Australia and other countries and will help with international collaboration in the Global Ocean Observing System, a worldwide effort to track changes in our waters.


Image courtesy of EMSO

Image courtesy of EMSO

Similar tools are being set up all around Europe as part of the European Multidisciplinary Seafloor and water-column Observatory (EMSO), which is part of the EU’s centrally coordinated research infrastructures, to measure how human activities affect our oceans and worsen climate change. As well as providing food and producing oxygen through the organisms that live within them, our oceans and seas regulate our climate by transporting warm water from the equator to the poles and cold water in the other direction. Researchers are using sophisticated machines to track how our oceans are changing, from small cameras that can record high-definition videos of the ocean floor, to others that can detect earthquakes, measure temperature and pressure, and record sounds.

This article was first published on Horizon: The EU research and innovation magazine. Click here to view the original article.

 


If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , ,


Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.
Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.





Related posts :



Robot Talk Episode 96 – Maria Elena Giannaccini

In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.
01 November 2024, by

Robot Talk Episode 95 – Jonathan Walker

In the latest episode of the Robot Talk podcast, Claire chatted to Jonathan Walker from Innovate UK about translating robotics research into the commercial sector.
25 October 2024, by

Robot Talk Episode 94 – Esyin Chew

In the latest episode of the Robot Talk podcast, Claire chatted to Esyin Chew from Cardiff Metropolitan University about service and social humanoid robots in healthcare and education.
18 October 2024, by

Robot Talk Episode 93 – Matt Beane

In the latest episode of the Robot Talk podcast, Claire chatted to Matt Beane from the University of California, Santa Barbara about how humans can learn to work with intelligent machines.
11 October 2024, by

Robot Talk Episode 92 – Gisela Reyes-Cruz

In the latest episode of the Robot Talk podcast, Claire chatted to Gisela Reyes-Cruz from the University of Nottingham about how humans interact with, trust and accept robots.
04 October 2024, by

Robot Talk Episode 91 – John Leonard

In the latest episode of the Robot Talk podcast, Claire chatted to John Leonard from Massachusetts Institute of Technology about autonomous navigation for underwater vehicles and self-driving cars. 
27 September 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association