Robohub.org
 

Into the deep: Underwater machines keep an eye on climate change

by
26 January 2017



share this:
Image courtesy of FIXO3

Image courtesy of FIXO3

The shells on crustaceans and molluscs off the Norwegian Atlantic coast are not as thick as they once were. This is because of ocean acidification, where increased carbon dioxide (CO2) in the atmosphere is absorbed by water, which raises its acidity. Researchers on the EU-funded FixO3 project, which finishes in 2017, are able to keep track of the growing CO2 and rising acidity levels in the water where these creatures live thanks to a device in the Norwegian Sea which collects data round the clock from as deep as 2 000 metres.


Image courtesy of EMSO

Image courtesy of EMSO

Similar tools are being set up all around Europe as part of the European Multidisciplinary Seafloor and water-column Observatory (EMSO), which is part of the EU’s centrally coordinated research infrastructures, to measure how human activities affect our oceans and worsen climate change. As well as providing food and producing oxygen through the organisms that live within them, our oceans and seas regulate our climate by transporting warm water from the equator to the poles and cold water in the other direction. Researchers are using sophisticated machines to track how our oceans are changing, from small cameras that can record high-definition videos of the ocean floor, to others that can detect earthquakes, measure temperature and pressure, and record sounds.


Image courtesy of EMSO

Image courtesy of EMSO

Data is transmitted from machines at the bottom of the ocean either through fibre optic cables or via buoys on the surface, which are linked to satellites. Scientists on land can then track this data, either in real time or with a delay depending on the system, and monitor pollution, climate change and even tsunamis over time. While the machines do require regular maintenance, it means that researchers are able to study the long-term health of our oceans while cutting down on costly expeditions.


Image courtesy of EMSO

Image courtesy of EMSO

Some of the findings to come out of these observatories are expected to be included in future reports by the UN’s influential Intergovernmental Panel on Climate Change. EMSO’s tools, such as one monitoring seismic activity and pressure on hydrothermal vents in the Mid-Atlantic Ridge, will also help the EU know if it has reached its goals of improving the health of Europe’s seas by 2020, as set out in the EU’s Marine Directive. EMSO is also the European counterpart of initiatives in the US, Japan, China, Australia and other countries and will help with international collaboration in the Global Ocean Observing System, a worldwide effort to track changes in our waters.


Image courtesy of EMSO

Image courtesy of EMSO

Similar tools are being set up all around Europe as part of the European Multidisciplinary Seafloor and water-column Observatory (EMSO), which is part of the EU’s centrally coordinated research infrastructures, to measure how human activities affect our oceans and worsen climate change. As well as providing food and producing oxygen through the organisms that live within them, our oceans and seas regulate our climate by transporting warm water from the equator to the poles and cold water in the other direction. Researchers are using sophisticated machines to track how our oceans are changing, from small cameras that can record high-definition videos of the ocean floor, to others that can detect earthquakes, measure temperature and pressure, and record sounds.

This article was first published on Horizon: The EU research and innovation magazine. Click here to view the original article.

 


If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , , , ,


Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.
Horizon Magazine brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU.





Related posts :



Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and

How drones are used during earthquakes

Drones are being used by responders in the terrible Morocco earthquake.
13 September 2023, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association