Robohub.org
 

Japan’s first 5-axis hybrid 3D printer


by
04 April 2016



share this:
Source: DigInfo TV/Youtube

Source: DigInfo TV/Youtube

In a collaborative research effort, Enomoto KogyoShizuoka University of Art and Culture, and software company C&G Systems have developed Japan’s first 5-axis hybrid 3D printer, capable of continuously performing lamination and cutting using 5-axis control technology.

“Conventional (3D) printers are primarily planar lamination printers, but this machine is capable of not only planar lamination, but also 5-axis lamination,” said Kawamura Takehire, Enomoto development department chief director. “Ordinarily, undercutting can’t be performed with 3-axis control type NC, but with 5 axis, tilt and rotation functions are added. In other words, control is implemented for the X, Y, Z, tilt and rotation axis, and as a result, we’re able to print very complex shapes.”

“Our (3D) printer was produced as a machine for use in R&D by professionals rather than everyday users. We want to cultivate a wide-range of various applications and would like to hear from customers about what types of applications they would like to jointly develop, or in other words, what types of items they would like to print with this machine.”

Conventional 3D printers typically need the use of a support material to prevent material from drooping when a sphere is modeled. However, since this printer is capable of performing lamination on 5 axis, the use of a support material is not required, so material costs are reduced. It is well-suited for prototyping prosthetic leg parts, other products in the medical care field, and aircraft parts, since it combines lamination and machining in the manufacturing process.


If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags:


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence