Robohub.org
 

Laboratory animal management robot can care for 30,000 mice


by
17 July 2013



share this:
13-0053-r

This robot is being developed to automate the management of laboratory animal colonies used by pharmaceutical companies and research institutions, primarily those that raise from 10,000 to 30,000 mice or rats. It’s currently under development by Nikkyo Technos and Yaskawa Electric.

“The biggest problem in raising animals is that diseases can spread from people to the animals. If that happens, all the animals have to be killed and replaced with new ones. So, infection by people must be prevented. By managing animals using robots in an enclosed space, it’s basically possible to eliminate the spread of diseases from animals to people or from people to animals.”

This six-axis, vertical, multi-jointed robot can mimic the motions of a human. It can change cage sheets, top up the food, and change the water. Taking out cages, changing sheets, and topping up food are each done with separate tools, which the robot picks up in turn. In this model, the amount of food remaining isn’t taken into account. But in the next model, a camera will be used to see how much food is left, so the robot can add the right amount.

“Mice, especially, are nervous animals, so the robot handles the cages gently. These tasks account for about 80% of the work involved with lab animals. So, our aim is to automate the hard, dirty, and dangerous task of dealing with so much dust and droppings.”

This robot can also work in coordination with a robot that carries cages from the rack to the workbench, and a monitoring system for the animal facility. In this way, it can automate all aspects of animal raising, from surveillance to care.

“The animals can be monitored with cameras 24/7. So, people can check their own cages from the monitoring station. The animals’ body temperature can also be managed. It takes about two hours for the cages to come back from the lab, but data can be viewed directly from a PC in the monitoring room. So, people can see the cages they want right away, wherever they are.”

“Doing this work with robots makes it much faster, so lots of cages can be handled in a short time. Also, using cameras to monitor food and water is safer and more reliable than having people do it. We’d like to complete the system this year, and next year, we’d like to produce several sets, so we can make at least a provisional start.”



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence