Robohub.org
 

Multi-viewpoint robotic camera system creates real ‘bullet time’ slow motion replays

by
04 June 2013



share this:
13-0045-r

This multi-viewpoint robotic camera system, under development by NHK, links the motion of eight sub-cameras to that of an individual camera, so that all the cameras film the same moving object.

“Using this system, you can create the effect of stopping time, and moving the viewpoint all around the subject.”

“Previous methods used a fixed camera, so they could only capture subjects moving in a narrow or limited space. But this multi-viewpoint robot camera system can film dynamically moving sports, or subjects at lots of locations in an extensive space.”

Each robot camera has two motors, for pan and tilt. The cameras also share lens data, so they can zoom in unison.

“Pictures taken with robot cameras inevitably have discrepancies in direction control. So simply switching between them doesn’t give smooth pictures. To solve that problem, we’ve brought in a computer, which redoes the direction control virtually. Image processing is done, to virtually orient the cameras in the direction of the subject, making it possible to switch between the cameras.”

“Pictures from this system can be sent out about one minute after filming is finished. First of all, we intend to use this for live sports broadcasting. We’d like to make it easy to understand what’s happening, by providing multi-viewpoint pictures instead of the current slow-motion replay.”

This multi-viewpoint robotic camera system can also be used as an image capture system for integral 3D TV, under development by NHK. By generating integral 3D video from multiple-viewpoint footage, 3D video of sports events will be viewable on integral 3D TV.



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



How robots learn to hike

A new control approach that enables a legged robot, called ANYmal, to move quickly and robustly over difficult terrain.
20 January 2022, by

How robots and bubbles could soon help clean up underwater litter

Everyone loves to visit the seaside, whether to enjoy the physical benefits of an exhilarating swim or simply to relax on the beach and catch some sun. But these simple life affirming pleasures are easily ruined by the presence of litter, which if persistent can have a serious negative impact on both the local environment and economy. However, help is at hand to ensure the pristine nature of our coastlines.
19 January 2022, by

Maria Gini wins the 2022 ACM/SIGAI Autonomous Agents Research Award

Congratulations to Maria Gini on winning this prestigious award, recognising her research and leadership in the field of robotics and multi-agent systems.
18 January 2022, by

UN fails to agree on ‘killer robot’ ban as nations pour billions into autonomous weapons research

Given the pace of research and development in autonomous weapons, the U.N. meeting might have been the last chance to head off an arms race.
16 January 2022, by

Science Magazine robot videos 2021

A compilation of Science Magazine videos featuring robotics research that were released during last year.
14 January 2022, by

CBQ: Commercial-grade Autonomous Mowers, Safety, and Dogfooding | Sense Think Act Podcast #11

In this episode, Audrow Nash speaks to Charles Brian Quinn (aka, CBQ), CEO and a Co-Founder of Greenzie. Greenzie make an autonomous driving system for commercial lawn mowers. We talk about Greenzie's...
11 January 2022, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association