Robohub.org
 

No GPS, no problem: Next-generation navigation


by
28 October 2016



share this:
Simulation results for a unmanned drone flying over downtown Los Angeles showing the true trajectory (red line), from GPS only (yellow line), and GPS aided with cellular signals (blue line). Image: ASPIN Laboratory at UC Riverside

Simulation results for a unmanned drone flying over downtown Los Angeles showing the true trajectory (red line), from GPS only (yellow line), and GPS aided with cellular signals (blue line). Image: ASPIN Laboratory at UC Riverside

A team of researchers at the University of California, Riverside has developed a highly reliable and accurate navigation system that exploits existing environmental signals such as cellular and Wi-Fi, rather than the Global Positioning System (GPS). The technology can be used as a standalone alternative to GPS, or complement current GPS-based systems to enable highly reliable, consistent, and tamper-proof navigation. The technology could be used to develop navigation systems that meet the stringent requirements of fully autonomous vehicles, such as driverless cars and unmanned drones.

Led by Zak Kassas, assistant professor of electrical and computer engineering in UCR’s Bourns College of Engineering, the team presented its research at the 2016 Institute of Navigation Global Navigation Satellite System Conference (ION GNSS+), in Portland, Ore., in September. The two studies, “Signals of Opportunity Aided Inertial Navigation” and “Performance Characterization of Positioning in LTE Systems,” both won best paper presentation awards.

Most navigation systems in cars and portable electronics use the space-based Global Navigation Satellite System (GNSS), which includes the U.S. system GPS, Russian system GLONASS, European system Galileo, and Chinese system Beidou. For precision technologies, such as aerospace and missiles, navigation systems typically combine GPS with a high-quality on-board Inertial Navigation System (INS), which delivers a high level of short-term accuracy but eventually drifts when it loses touch with external signals.

Despite advances in this technology, current GPS/INS systems will not meet the demands of future autonomous vehicles for several reasons: First, GPS signals alone are extremely weak and unusable in certain environments like deep canyons; second, GPS signals are susceptible to intentional and unintentional jamming and interference; and third, civilian GPS signals are unencrypted, unauthenticated, and specified in publicly available documents, making them spoofable (i.e., hackable). Current trends in autonomous vehicle navigation systems therefore rely not only on GPS/INS, but a suite of other sensor-based technologies such as cameras, lasers, and sonar.

“By adding more and more sensors, researchers are throwing ‘everything but the kitchen sink’ to prepare autonomous vehicle navigation systems for the inevitable scenario that GPS signals become unavailable. We took a different approach, which is to exploit signals that are already out there in the environment,” Kassas said.

A schematic showing how Zak Kassas, assistant professor of electrical and computer engineering at UC Riverside, and his team are using existing communications signals to complement satellite-based navigation systems like GPS for the control of driverless cars and unmanned aerial vehicles (UAVs). Image: ASPIN Laboratory at UC Riverside

A schematic showing how Zak Kassas, assistant professor of electrical and computer engineering at UC Riverside, and his team are using existing communications signals to complement satellite-based navigation systems like GPS for the control of driverless cars and unmanned aerial vehicles (UAVs). Image: ASPIN Laboratory at UC Riverside

Instead of adding more internal sensors, Kassas and his team in UCR’s Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory have been developing autonomous vehicles that could tap into the hundreds of signals around us at any point in time, like cellular, radio, television, Wi-Fi, and other satellite signals.

In the research presented at the ION GNSS+ Conference, Kassas’ team showcased ongoing research that exploits these existing communications signals, called “signals of opportunity (SOP)” for navigation. The system can be used by itself, or, more likely, to supplement INS data in the event that GPS fails. The team’s end-to-end research approach includes theoretical analysis of SOPs in the environment, building specialized software-defined radios (SDRs) that will extract relevant timing and positioning information from SOPs, developing practical navigation algorithms, and finally testing the system on ground vehicles and unmanned drones.

“Autonomous vehicles will inevitably result in a socio-cultural revolution. My team is addressing the challenges associated with realizing practical, cost-effective, and trustworthy autonomous vehicles. Our overarching goal is to get these vehicles to operate with no human-in-the loop for prolonged periods of time, performing missions such as search, rescue, surveillance, mapping, farming, firefighting, package delivery, and transportation,” Kassas said.

In addition to Kassas, graduate students Joshua Morales, Joe Khalife, Kimia Shamaei, Jesse Garcia, and Sonya Ragothaman and undergraduate student Souradeep (Gogol) Bhattacharya contributed to this research, which was funded with support from the Office of Naval Research (ONR). Additional videos of the team’s research can be viewed on the ASPIN Laboratory’s YouTube page.

The UCR Office of Technology Commercialization has filed patents for the inventions above.

This article was originally published by UCR Today.


If you liked this article, you may also enjoy reading:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , ,


Robohub Editors





Related posts :



Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence