Robohub.org
 

Oxbotica’s autonomous vehicle software learns its environment and how it changes over time

by
10 October 2016



share this:
Oxbotica testing Selenium. Credit: Oxbotica/YouTube

Oxbotica testing Selenium. Credit: Oxbotica/YouTube

Oxbotica, a UK technology company with a focus on mobile robotics and driverless vehicles, has created Selenium, an autonomous software system acting similar to a ‘brain’ for a vehicle. Selenium can work in pedestrianised environments as well as roads and motorways, and is not reliant on GPS to operate – meaning it can transition between indoor and outdoor settings, overground or underground. The system has been developed to be “vehicle agnostic” and can be applied to cars, self-driving pods (e.g. for campuses and airports), and warehouse truck fleets.

The software developed by Oxbotica’s team of scientists, mathematicians and engineers gives any vehicle an awareness of where it is, what surrounds it, and how it should move to complete a task.

Selenium’s system uses patented algorithms giving vehicles a next generation level of intelligence to autonomously perform a range of mobility tasks, including motion control, braking, calibration, navigation, static and dynamic obstacle detection. One of the main focusses at the moment is low-speed autonomous transport, using low-cost vision sensors, explains Dirk Gorissen, Senior Engineer at Oxbotica.

“While you are travelling at a fairly low speed, it is a much more unstructured and unpredictable environment than, say, a highway. There is a lot of talk of level 4 or even 5 autonomy but, to our knowledge, nobody has reached this reliably yet. Even Google with their millions of autonomously driven miles still needs a safety driver. There is a lot of work to get there, and we have our own roadmaps in place that will enable our customers to be class leading,” he said.

“Robotics outside of simulation is difficult and getting fully reliable solutions that work anytime and any place are where many others have failed,” said Gorissen. “Many components need to work together seamlessly in order to create a safe, reliable system. Particularly in the context of autonomous vehicles where you have to deal with human behaviour from other drivers and road users. In our launch projects in Greenwich and Milton Keynes, we are working in pedestrianised areas and working amongst pedestrians, cyclists, cats and dogs, as well as, regular road users.”

Selenium is set to be deployed at a series of autonomy trials where Oxbotica is the sole supplier of autonomy software, including the £8 million GATEway project in Greenwich and the LUTZ Pathfinder self-driving pod project in Milton Keynes. The company is also working with manufacturers in a broad spectrum of mobile autonomy domains, driverless cars.

“A key strength of the Oxford heritage is our focus on systems that learn from experience. The more often a vehicle traverses a given route the more it learns about its environment and how it changes over time (rain, fog, snow, road works, etc.),” said Gorissen. “We don’t believe in building a single all-encompassing model of the world or that autonomy is a binary on/off switch that is either active all the time or never. Rather we believe in a system that will offer autonomy as and when it is confident enough to do so. Scaling can then be achieved by sharing experiences of the world between vehicles.”

“We are very carefully focused – intentionally – on the things that we do well. For the applications and domains we have set our sights on we are fully on track and you will be able to see our Selenium autonomous control system running public demos of pods around Greenwich in East London from early 2017,” he said.

Oxbotica is a spin-off from Oxford University’s Mobile Robotics Group.


If you liked this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter



tags: , , , , , , , ,


Kassie Perlongo Kassie is the Managing Editor at Robohub.
Kassie Perlongo Kassie is the Managing Editor at Robohub.





Related posts :



Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and

How drones are used during earthquakes

Drones are being used by responders in the terrible Morocco earthquake.
13 September 2023, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association