Robohub.org
 

Power Loader power amplification exoskeleton robot


by
08 January 2013



share this:
12-0225-r

This power amplification robot, called Power Loader, is currently under development by Activelink, a Panasonic subsidiary venture.

The aim is to achieve a robot that can freely utilize power beyond human strength, in emergencies or on construction sites. Power Loader’s role is to link people with construction machinery.

“Power Loader receives the force input by a person through its force sensors, and amplifies it using motors. In this way, it assists the person, by producing a large force that the person can’t achieve alone. The concept we’ve used to develop Power Loader is, you get into it, rather than wearing it. Using this concept makes it safer to operate.”

When Power Loader was first developed, Activelink made a very large version. But following the accident at the Fukushima Daiichi nuclear plant, development has shifted to Power Loader Light, a more compact version.

“In each sole, there’s a six-axis force sensor. In line with the force vectors detected there, three axes for each leg are used to control motors in the ankle, knee, and hip, exerting a force in the direction of support.”

“We want to make Power Loader capable of carrying 50-60 kg while moving with agility. The legs could be used to support something very heavy, such as a radiation suit, and we think it could also carry 50-60 kg easily using the robot arms.”

This equipment serves as a platform for research on power loader control, which is being considered by Activelink and the Japan Atomic Power Company. It can be used to carry 30 kg with one arm, while exerting a minimum of effort.

“This is a trial harness, for use in designing a connection to the Power Loader Light legs. We’ve made it as compact as possible while producing this much power.”

“After that, we’re considering a very large version. The big Power Loader, which we were developing before, uses 22 motors. We’d like to achieve an exoskeleton with that kind of all-axis assist. When we do that, we think we’ll have a robot that can carry at least 100 kg easily.”



tags: , ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence