Power Loader power amplification exoskeleton robot

08 January 2013

share this:

This power amplification robot, called Power Loader, is currently under development by Activelink, a Panasonic subsidiary venture.

The aim is to achieve a robot that can freely utilize power beyond human strength, in emergencies or on construction sites. Power Loader’s role is to link people with construction machinery.

“Power Loader receives the force input by a person through its force sensors, and amplifies it using motors. In this way, it assists the person, by producing a large force that the person can’t achieve alone. The concept we’ve used to develop Power Loader is, you get into it, rather than wearing it. Using this concept makes it safer to operate.”

When Power Loader was first developed, Activelink made a very large version. But following the accident at the Fukushima Daiichi nuclear plant, development has shifted to Power Loader Light, a more compact version.

“In each sole, there’s a six-axis force sensor. In line with the force vectors detected there, three axes for each leg are used to control motors in the ankle, knee, and hip, exerting a force in the direction of support.”

“We want to make Power Loader capable of carrying 50-60 kg while moving with agility. The legs could be used to support something very heavy, such as a radiation suit, and we think it could also carry 50-60 kg easily using the robot arms.”

This equipment serves as a platform for research on power loader control, which is being considered by Activelink and the Japan Atomic Power Company. It can be used to carry 30 kg with one arm, while exerting a minimum of effort.

“This is a trial harness, for use in designing a connection to the Power Loader Light legs. We’ve made it as compact as possible while producing this much power.”

“After that, we’re considering a very large version. The big Power Loader, which we were developing before, uses 22 motors. We’d like to achieve an exoskeleton with that kind of all-axis assist. When we do that, we think we’ll have a robot that can carry at least 100 kg easily.”

tags: , ,

DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.

Related posts :

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by



Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association