Robohub.org
 

Quiet inroads in robotics: the Vecna story


by
26 March 2018



share this:

Robotics is undergoing fundamental change in three core areas: collaboration, autonomous mobility and increasing intelligence.

Autonomous mobility technology is entering the industrial vehicle marketplace of AGVs, forklifts and tugs with new products, better navigation technologies and lower costs.

Forecasters Grandview Research and IDTechEx suggest that autonomous forklifts and tugs will emerge as the standard from 2022/2023 onwards, ultimately growing to represent 70% of annual mobile material handling equipment by 2037. The key to this transformation is unmanned mobile autonomy. These new mobile autonomous robots can achieve higher productivity and cost efficiencies because the technology largely reduces the driver labor costs, increases safety, and lowers insurance rates and spoilage.

The Vecna Story

Cambridge, MA-based Vecna Technologies, founded in 1998 by a group of MIT scientists on a $5,000 shoe-string investment from the founders, has self-funded itself into a profitable ongoing manufacturer, researcher and software firm serving the healthcare, logistics and remote presence marketplaces. They have amassed more than a hundred issued and pending patents and employ more than 200.

Earlier this year Vecna Technologies spun off 60 employees and the robotics business to found and operate Vecna Robotics working with a large number of partners and contractors. The new entity’s primary applications are to provide mixed fleets of mobile robotic solutions for:

  • Goods to person
  • Receiving to warehouse
  • Production cell to cell
  • Point to point gofering
  • Zone picking transport
  • Tote and case picking transport

Vecna already has a broad range of products serving these applications: from tuggers like at FedEx (see video below) to RC20s which are the lowest cost per performance mobile robot on the market and several models in between. Thousands of Vecna robots are deployed worldwide in (1) major manufacturing facilities doing line-side replenishment; (2) in major shipping companies moving non-conveyables and automating indoor and outdoor tuggers and lifts; and (3) in major 3PLs and retailers doing order fulfillment transport both for store replenishment and for e-commerce.

A recent NY Times story exemplifies how these new Vecna Robotics autonomous mobile robots are impacting the world of material handling. In this case, Vecna robots are used by FedEx to handle large items that don’t fit on conveyor belts.

“When a truck filled with packages arrives, workers load the bulky items onto trailers hitched to a robot. Once these trailers are full, they press a button that sends the vehicle on its way. Equipped with laser-based sensors, cameras and other navigation tools, the robots stop when people or other vehicles get in the way. In some cases, they even figure out a new way to go.”

Vecna robots have vision systems that allow them to navigate safely around humans so that they can share common paths. And they have Autonomy Kit, a general purpose robot brain that can turn any piece of equipment into a safe and efficient mobile robot. Everything from large earth moving and construction equipment to forklifts, tuggers, floor cleaners, and even small order fulfillment and each picking systems can easily be automated and operate in collaborative human-filled environments. Further, all Vecna systems are directed by a smart centralized controller for optimization, traffic control and service. Because Vecna Robotics is finding so much demand (and success) in this sector, it is considering bringing in outside money to fund a more rapid expansion into the marketplace.

Meanwhile, Vecna Technologies, sans the robotics group, remains a leader in healthcare information technology providing patient portals, payment solutions, kiosks, mobile apps, telepresence and medical logistics, and “will continue to innovate and accelerate cutting edge solutions to our customers in the commercial and government healthcare markets,” says Vecna CTO Daniel Theobald.

Marketplace full of competitors, many from China

Source: Styleintelligence G2P Robotics, Feb 2018

As competitors sense the growing demand from distribution and fulfillment center executives in need of solutions to pick, pack and ship more parcels quickly, there are many startups and companies inventing or modifying their products to solve those problems and take advantage of the demand.

There is also increasing demand from factory managers who need flexibility to move goods within their facilities that cannot be handled economically by human workers or fixed conveyor systems.

Both markets are growing exponentially and, as can be seen by the two charts above, there are many players competing in the field. Further, the market is also fueled by approved investment priorities in capital purchases that were put off during and after the financial crisis of 2008-9. This can be seen in the VDC Research graphic on the right which surveyed manufacturing executives about their capital purchasing plans for 2018-2020.

Vecna responded to those demands years ago when it began developing and expanding its line of robots and accompanying software. The refocusing that went into spinning off Vecna Robotics will help enable Vecna to continue to be a big, innovative and progressive player in the mobile robotics market.




Frank Tobe is the owner and publisher of The Robot Report, and is also a panel member for Robohub's Robotics by Invitation series.
Frank Tobe is the owner and publisher of The Robot Report, and is also a panel member for Robohub's Robotics by Invitation series.





Related posts :



Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association