Robohub.org
 

Robot teams create supply chain to deliver energy to explorer robots

by
22 September 2016



share this:
mobile-robots-robotics

Mobile robots can be used in many applications, they are especially suited for environments that are unreachable or too dangerous for humans. In many cases, these environments have to be explored and mapped before robots can carry on with their mission. Mobile robots are generally limited in their run time and the travel range because they are battery operated. To increase the time robots can work, their batteries can be recharged at docking stations (DSs). Recharging at DSs has the additional advantage of increasing autonomy, reducing the need for human intervention. Nevertheless, robots still have a limited range they can travel before they have to return for recharging. This limits the reachable area by the robots. To overcome this threshold, robots can form teams in which they take on different tasks, allowing some robots to further explore while others form a supply chain to deliver energy to the exploring robots.

There are a number of challenges to solve in this scenario. Firstly, the robots need to be aware of their energy and decide autonomously when to seek a DS or recharger robot. Secondly, exploring robots need to coordinate for deciding which robot is allowed to recharge and where it should recharge. Thirdly, robots need to form teams and coordinate task assignment. All these steps of coordination and scheduling should work in a distributed fashion to make the system adaptive to changes and robust against failures of individual robots.

So far we investigated the first two points and developed coordination strategies. In [1] we present an approach for energy efficient path planning. A robot always calculates the reachable frontiers as well as the distance to the DS. Once there are no more reachable frontiers the robot returns for recharging. This approach makes sure that it fully uses all of its energy without running out of power. In [2] we present a coordination strategy based on market economy for robots to negotiate which robot is allowed to recharge. We also present policies for selecting one of the available DSs and compare their performance in different scenarios.

A short demo and description of the system can be seen in our video:

Christoph Sagmeister, CampusTV Alpen-Adria-Universität


References
[1] M. Rappaport, “Energy-aware mobile robot exploration with adaptive decision thresholds,” in Proc. Int. Symp. on Robotics (ISR), Jun. 2016.
[2] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile robots during exploration,” under review.



tags: , , ,


Micha Rappaport is a researcher and teaching assistant at the Institute of Networked and Embedded Systems at the Alpen-Adria-Universität Klagenfurt
Micha Rappaport is a researcher and teaching assistant at the Institute of Networked and Embedded Systems at the Alpen-Adria-Universität Klagenfurt





Related posts :



Engineers devise a modular system to produce efficient, scalable aquabots

The system’s simple repeating elements can assemble into swimming forms ranging from eel-like to wing-shaped.
07 February 2023, by

Microelectronics give researchers a remote control for biological robots

First, they walked. Then, they saw the light. Now, miniature biological robots have gained a new trick: remote control.
05 February 2023, by

Robot Talk Episode 35 – Interview with Emily S. Cross

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Emily S. Cross from the University of Glasgow and Western Sydney University all about neuroscience, social learning, and human-robot interaction.
03 February 2023, by

Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association