Robohub.org
ep.

168

podcast
 

Nylon Fishing Line Actuator with Geoff Spinks

by
31 October 2014



share this:


In this episode, Ron Vanderkley speaks with Professor Geoffrey Spink from Wollogong University about his team’s work on artificial muscles.

Professor Spink’s Australian led team are able to produce artificial muscles from nylon fishing line that can contract by about 50% of their original length, can generate forces that are over 100 times larger than our own muscle, and produce a mechanical power output of over five kilowatts per kilogram – similar to a jet engine. He tells us that “the advantage of using something as simple as fishing line or sewing thread is that they’re really cheap and they’re readily available… The tools we need to make the fishing line muscles are fishing line, a hair dryer, and an electric drill.”

The process is simply to attach one end of a piece of fishing line to an electric drill and the other end to a weight so that it provides a bit of tension. As the drill is switched on and starts rotating, the weight end of the fishing line is impaired from twisting, and eventually this leads to a phase called over-twisting, where the fishing line forms a coil. Finally, a blast of heat sets the shape and it is left to cool. To make the coil work as an artificial muscle, a little bit of tension is applied again, and then some more heat. The polymer fibers can be made very thin or very thick, with the amount of force generated increasing as the fibers get thicker.

The lifespan of the polymer cord muscles has been tested for one million cycles, and there was no degradation in performance.

Possible uses include artificial muscles for prosthetics, and the design of light weight humanoid robots. In development is a new lymphoedema compression sleeve, which will use these muscle fibres to gently massage the arm. The garment may prevent the build-up of lymphatic fluid and the discomfort that it causes. Woven into clothing fabric, this could create smart garments that are powered by body heat. If the wearer gets too hot, the muscles expand, the weave opens up and that releases some heat until the body has cooled down again. Similar concepts could be used to regulate the temperature in a building or greenhouse.

 

Geoff Spinks

image2Professor Geoff Spinks is an Australian Research Council Professorial Fellow. His research interests focus on new materials and nanotechnology and he specialises in the development and application of materials for artificial muscles.

Spinks has published over 160 journal articles, including 4 co-authored articles in Science magazine. He is the co-recipient of in excess of $35m in grant funding.

Spinks has worked closely with industry including a sabbatical leave with BHP Research and Allied Signal Inc. (USA) and collaborative projects funded through the ARC Linkage and CRC schemes. His current interests include new product development (such as the “Lymph Sleeve”) and new manufacturing methods (such as 3D printing) that use his artificial muscle materials.

Spinks has had a strong engagement with teaching across all levels of engineering materials and was co-founder of UoW’s bachelor degrees in Nanotechnology. He has supervised 22 PhD, 7 Masters and over 50 final year / honours students to completion.

Links:



tags: , , , ,


Ron Vanderkley





Related posts :



IEEE 17th International Conference on Automation Science and Engineering paper awards (with videos)

The IEEE International Conference on Automation Science and Engineering (CASE) is the flagship automation conference of the IEEE Robotics and Automation Society and constitutes the primary forum for c...
ep.

340

podcast

NVIDIA and ROS Teaming Up To Accelerate Robotics Development, with Amit Goel

Amit Goel, Director of Product Management for Autonomous Machines at NVIDIA, discusses the new collaboration between Open Robotics and NVIDIA. The collaboration will dramatically improve the way ROS and NVIDIA's line of products such as Isaac SIM and the Jetson line of embedded boards operate together.
23 October 2021, by

One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association