Robohub.org
ep.

059

podcast
 

Programmable matter with Michael Tolley and Jonas Neubert


by
27 August 2010



share this:

In this episode we dive into the world of programmable matter with Michael Tolley and Jonas Neubert from the Computational Synthesis Laboratory run by Hod Lipson at Cornell University, NY. They present their amazing hardware and control to stochastically assemble matter in fluid.

Michael Tolley

Michael Tolley is finishing his PhD under the supervision of Hod Lipson at Cornell University.

Imagine being able to throw a hand-full of smart matter in a tank full of liquid and then pulling out a ready-to-use wrench once the matter has assembled. As a first step in this direction, Tolley has been looking at how smart cubes can assemble into physical objects in fluids. The interest in using fluid stems from the fact that modules, transported by the flows in their environment, do not need any power or motors. The shapes and latching mechanisms on his cubes, whether on the micro– or centimeter– scale, were smartly designed to enable autonomous alignment and connection. In the end, his approach at building smart matter follows the idea of embodied AI where the intelligence of the robot is embedded in its physical body and its interactions with the environment.

Beyond hardware, Tolley has been looking at controlling such stochastic systems by changing the flows in the tanks to assemble 2D and 3D structures and even repair objects when a part has been broken off. For this purpose, he’s been working on a Programmable Matter Simulator to investigate the possibilities to harness random motion.

Jonas Neubert

Jonas Neubert is also doing his PhD at Hod Lipson’s lab.

As opposed to Tolley, he is looking at making active modules that can compute, connect to neighbors, communicate and open and close valves to direct liquid flows. His setup, presented at ICRA this year is very far from the classical screws and blots used in robotics. Indeed, connections are made by autonomously soldering and desoldering blocks… in liquid. In another original development, valving is done by heating the surrounding fluid which then reacts by becoming a gel and blocking the flow.

Neubert covers all the neat technical developments in his system and the challenges in making electronics that operate in liquid.

Links:


Latest News:
For videos of this week’s Robots news, including the Surena 2 humanoid robot and the prosthetic arm controlled by thought, have a look at the Robots Forum.



tags: ,


Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.
Podcast team The ROBOTS Podcast brings you the latest news and views in robotics through its bi-weekly interviews with leaders in the field.





Related posts :



Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence