Signal processing technology to extract required information from image, sound, and biometric signals

26 May 2014

share this:

At Keio University, the Mitsukura Laboratory, in the Department of System Design Engineering, researches how to extract required information from biometric, image, audio signal data. To achieve this, the researchers use technologies such as signal processing, machine learning, pattern recognition, artificial intelligence, and statistical processing.

“Our research has three research projects : image processing, audio signal processing, and biometric signal processing. In image processing, we’re researching how to embed and extract motion. In audio signal processing, we construct the systems which divide into the scores automatically. And in biometric signal processing, we determine the meaning of brain waves(EEG) and convert thoughts to text.”

In image signal processing research, the Mitsukura Lab works on position matching between real and virtual space, which is the basis for AR technology. These researchers are developing a method for estimating the orientation of a face at high speed with high precision, to link the motion of an actual person with an animation. Another research topic at the Mitsukura Lab is expression recognition, using information about changes in the eyebrows and corners of the mouth. The Lab is also researching how to overlay virtual data used in head-mount displays in the real world.

In audio signal processing research, we studied the ability to automatically determine which direction a sound is coming from, by using multiple mic signals. The researchers are developing a system to automatically direct the mic toward the person talking in a videoconference, and a robot to track a talking person. The Lab is also working to develop a system for inputting information by whistling.

In research on biometric signal processing, the Lab is developing a system to operate computers and devices by reading brain waves(EEG) and EOGs.

In brain-wave(EEG) signal processing, the Lab is doing a wide range of R&D. One research project is a system to determine the user’s likes / dislikes and convert them to text form. Another research project is to evaluate sound quality from brain waves(EEG).

Signal processing technology using EOGs, obtained around the eyes, is being utilized in R&D on steering a wheelchair by winking.

Signal processing technology is expected to have a diverse range of applications, including healthcare, entertainment, and wearable devices.

In the Mitsukura Lab, the researchers are using the many algorithms they’ve developed so far to advance such R&D further, in ways that contribute to society.

“At the present stage, for example, it’s said that Google Glass will become very popular, but with that, you have to wear glasses. Wearing glasses itself is unnatural for people. The same is true for brain-wave(EEG) systems; if something’s unnatural, people won’t do it for long. The first thing we have to do is create a system that can read brain waves(EEG) in a natural manner. Next, in conjunction with that, we need a system that can communicate emotions between people, in a way that resembles using the telephone to communicate thoughts. I think we might be able to communicate emotions even without a telephone.”

tags: , , ,

DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.

Related posts :

ROS Awards 2022 results

The intention of these awards is to express recognition for contributions to the ROS community and the development of the ROS-based robot industry, and to help those contributions gain awareness.
02 July 2022, by



Origin Story of the OAK-D, with Brandon Gilles

Brandon Gilles, the founder of Luxonis and maker of the OAK-D, describes the journey and the flexibility of the OAK-D line of products
01 July 2022, by

The one-wheel Cubli

Researchers Matthias Hofer, Michael Muehlebach and Raffaello D’Andrea have developed the one-wheel Cubli, a three-dimensional pendulum system that can balance on its pivot using a single reaction wheel. How is it possible to stabilize the two tilt angles of the system with only a single reaction wheel?
30 June 2022, by and

At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association