Robohub.org
 

Signal processing technology to extract required information from image, sound, and biometric signals

by
26 May 2014



share this:

At Keio University, the Mitsukura Laboratory, in the Department of System Design Engineering, researches how to extract required information from biometric, image, audio signal data. To achieve this, the researchers use technologies such as signal processing, machine learning, pattern recognition, artificial intelligence, and statistical processing.

“Our research has three research projects : image processing, audio signal processing, and biometric signal processing. In image processing, we’re researching how to embed and extract motion. In audio signal processing, we construct the systems which divide into the scores automatically. And in biometric signal processing, we determine the meaning of brain waves(EEG) and convert thoughts to text.”

In image signal processing research, the Mitsukura Lab works on position matching between real and virtual space, which is the basis for AR technology. These researchers are developing a method for estimating the orientation of a face at high speed with high precision, to link the motion of an actual person with an animation. Another research topic at the Mitsukura Lab is expression recognition, using information about changes in the eyebrows and corners of the mouth. The Lab is also researching how to overlay virtual data used in head-mount displays in the real world.

In audio signal processing research, we studied the ability to automatically determine which direction a sound is coming from, by using multiple mic signals. The researchers are developing a system to automatically direct the mic toward the person talking in a videoconference, and a robot to track a talking person. The Lab is also working to develop a system for inputting information by whistling.

In research on biometric signal processing, the Lab is developing a system to operate computers and devices by reading brain waves(EEG) and EOGs.

In brain-wave(EEG) signal processing, the Lab is doing a wide range of R&D. One research project is a system to determine the user’s likes / dislikes and convert them to text form. Another research project is to evaluate sound quality from brain waves(EEG).

Signal processing technology using EOGs, obtained around the eyes, is being utilized in R&D on steering a wheelchair by winking.

Signal processing technology is expected to have a diverse range of applications, including healthcare, entertainment, and wearable devices.

In the Mitsukura Lab, the researchers are using the many algorithms they’ve developed so far to advance such R&D further, in ways that contribute to society.

“At the present stage, for example, it’s said that Google Glass will become very popular, but with that, you have to wear glasses. Wearing glasses itself is unnatural for people. The same is true for brain-wave(EEG) systems; if something’s unnatural, people won’t do it for long. The first thing we have to do is create a system that can read brain waves(EEG) in a natural manner. Next, in conjunction with that, we need a system that can communicate emotions between people, in a way that resembles using the telephone to communicate thoughts. I think we might be able to communicate emotions even without a telephone.”



tags: , , ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



How robots and bubbles could soon help clean up underwater litter

Everyone loves to visit the seaside, whether to enjoy the physical benefits of an exhilarating swim or simply to relax on the beach and catch some sun. But these simple life affirming pleasures are easily ruined by the presence of litter, which if persistent can have a serious negative impact on both the local environment and economy. However, help is at hand to ensure the pristine nature of our coastlines.
19 January 2022, by

Maria Gini wins the 2022 ACM/SIGAI Autonomous Agents Research Award

Congratulations to Maria Gini on winning this prestigious award, recognising her research and leadership in the field of robotics and multi-agent systems.
18 January 2022, by

UN fails to agree on ‘killer robot’ ban as nations pour billions into autonomous weapons research

Given the pace of research and development in autonomous weapons, the U.N. meeting might have been the last chance to head off an arms race.
16 January 2022, by

Science Magazine robot videos 2021

A compilation of Science Magazine videos featuring robotics research that were released during last year.
14 January 2022, by

CBQ: Commercial-grade Autonomous Mowers, Safety, and Dogfooding | Sense Think Act Podcast #11

In this episode, Audrow Nash speaks to Charles Brian Quinn (aka, CBQ), CEO and a Co-Founder of Greenzie. Greenzie make an autonomous driving system for commercial lawn mowers. We talk about Greenzie's...
11 January 2022, by and

California’s AV testing rules apply to Tesla’s “FSD”

Tesla is testing its self-proclaimed “full self-driving” vehicles on California roads without complying with the testing requirements of California’s automated driving law.
10 January 2022, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association