Robohub.org
 

Solar powered day/night autonomous flight achieved: Airborne for 28 hours without fuel!


by
09 July 2015



share this:

AtlantikSolar_launchThe AtlantikSolar Unmanned Aerial Vehicle took off on June 30th, 2015 at 11:14 o’clock to attempt the “holy grail” of solar-powered flight: the crossing of a full day-night cycle on solar power alone. More than 28 hours later, on July 1st at 15:35, the aircraft landed safely and with fully recharged batteries, thus showing AtlantikSolar’s long-endurance flight capability. This is of significant interest for large-scale disaster support, industrial inspection or meteorological observation missions, especially in the compact form of a hand-launchable 7kg UAV such as AtlantikSolar.

The flight was performed at the Rafz RC-model club airfield in excellent sun conditions. After take-off at 11:14, with batteries charged to 57%, the aircraft was quickly setup to follow an efficient and fully-autonomous loitering path, which allowed a completed battery-charge by 14:08 o’clock.

atlantiksolar

The midday and afternoon were characterized by strong thermal up- and downdrafts, but enough power was generated by the solar panels to keep the batteries full. Their discharge started only when the sun slowly went down at around 19:30.

The night flight provided calm conditions, with the autopilot keeping the aircraft stable despite horizontal winds of up to 5m/s, and the safety pilots keeping a good eye on the aircraft using its position indicator lights. Flying at an average airspeed of 8.4m/s (the point of minimum sink rate) and an average power consumption of 43W during the night, the aircraft received first sun at around 5:50 o’clock, and maintained a minimum charge of around 35% until the solar modules regenerated enough power to stay airborne.

After 24 hours of continuous flight, the aircraft had recharged its batteries to 84%, a significantly higher state-of-charge than the day before. The batteries were in fact fully charged by 12:43 o’clock – one hour and twenty-five minutes earlier than the day before.

AtlantikSolar_landing

AtlantikSolar landed safely at 15:35, thereby setting a new Swiss endurance record for unmanned solar-powered flight, and improving upon the previous internal record (ASL’s Sky Sailor) by a over an hour.

AtlantikSolar_ground

The project’s next goal is to extend the flight duration to more than 80 hours (3 days), in order to beat the old endurance record for solar-powered UAVs below 20kg (48h flight by the 13kg SoLong UAV in 2005) by more than a day. If it is able to achieve an 80-hour flight endurance, the 7kg AtlantikSolar would be the third-longest flying aircraft in the world, only behind Airbus Space’s 53kg Zephyr and the 2300kg Solar Impulse 2.

We’d like to thank everybody who made this flight possible — including all project partners and collaborators, the Rafz Model airfield club, and our safety pilots — for working so hard and making this big step in the project possible.

The AtlantikSolar project was developed at the Autonomous Systems Lab at ETH Zurich



tags: , , , , ,


Philipp Oettershagen is a research assistant and PhD student at ETH Zurich’s Autonomous Systems Lab (ASL).
Philipp Oettershagen is a research assistant and PhD student at ETH Zurich’s Autonomous Systems Lab (ASL).





Related posts :



Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence