Robohub.org
 

Teaching a brain-controlled robotic prosthetic to learn from its mistakes

by
01 October 2015



share this:
Using a BCI the robot was able to find targets that the person could see but the robot could not

Using a BCI the robot was able to find targets that the person could see but the robot could not (Photo: Iturrate et al., 2015).

Brain-Machine Interfaces (BMIs) — where brain waves captured by electrodes on the skin are used to control external devices such as a robotic prosthetic — are a promising tool for helping people who have lost motor control due to injury or illness. However, learning to operate a BMI can be very time consuming. In a paper published in Nature Scientific Reports, a group from CNBI, EPFL and NCCR Robotics show how their new feedback system can speed up the training process by detecting error messages from the brain and adapting accordingly.

One issue that bars the use of BMIs in everyday life for those with disabilities is the amount of time required to train users, who must learn to modulate their thought processes before their brain signals are clear enough to control an external machine. For example, to move a robotic prosthetic arm, a person must actively think about moving their arm — a thought process that uses significantly more brainpower than the subconscious thought required to move a natural arm. Furthermore, even with extensive training, users are often not able to perform complex movements.

It has been observed, however, that the brain emits very different waves when it experiences success at controlling a BMI than when it experiences failure. With this in mind, the research team developed a new feedback system that records error signals from the brain (called ‘error-related potentials’, or ErrPs) and uses these to evaluate whether or not the correct movement has been achieved. The system then adapts the movement until it finds the correct one, becoming more accurate the longer it is in use.

Schematic diagram of the new system

In order to determine the ErrP, twelve subjects were asked to watch a machine perform 350 separate movements, where the machine was programmed to make the wrong movement in 20% of cases. This step took an average of 25 minutes. After this first training stage, each subject performed three experiments where they attempted to locate a specific target using the robotic arm. As expected, the time taken to locate a target reduced as the experiment continued.

Experimental scheme

Three experiments showed that a robot improved its ability to find the position of a fixed point using error-related brain activity. (Iturrate et al. 2015)

 

This new approach finds obvious applicability in the field of neuroprosthesis, particularly for those with degenerative neurological conditions who find that their requirements change over time. The system also has the potential to automatically adapt itself without the need for retraining or reprogramming.

Reference

I. Iturrate, R. Chavarriaga, L. Montesano, J.  Minguez and J. del R. Millán, “Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control,” Nature Scientific Reports, vol. 5, Article number: 13893, 2015. doi:10.1038/srep13893


If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , ,


NCCR Robotics





Related posts :



ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association