Robohub.org
 

Teaching robots the physics of sliding and pushing objects

by
16 June 2016



share this:

Robot learns to push object and identifies patch friction model. Source: YouTube

Robot learns to push object and identifies patch friction model. Source: YouTube



The Manipulation Lab at the CMU Robotics Institute proposes a computational model that relates an applied robot action to the resultant object motion. Their research won the Best Conference Paper Award at ICRA 2016.

Understanding the mechanics of manipulation is essential for robots to autonomously interact with the physical world. One of the common manipulation scenarios involves pushing objects in a plane subject to dry friction. We propose a planar friction (force-motion) model that relates an applied robot action to the resultant object motion.

The robot randomly pokes the object of known shape with a point finger to collect force-motion data. We then optimize a convex polynomial friction representation with physics-based constraints. Based on the representation, we demonstrate applications of stable pushing and dynamic sliding simulation.

The robot randomly pokes the object of known shape with a point finger to collect force-motion data. We then optimize a convex polynomial friction representation with physics-based constraints. Based on the representation, we demonstrate applications of stable pushing and dynamic sliding simulation.

The difficulty lies in that the contact between the object and supporting surface is an area-to-area contact with unknown pressure distribution. We don’t know which part of the area is supporting how much weight nor do we know the coefficient of friction. This makes object motion hard to predict. The key observation is the space of generalized friction force forms a convex set based on the principle of maximum dissipation (a generalized Coulomb’s friction law) [1]. The boundary of such set is termed as limit surface [2]. The geometry of such surface, albeit convex, can be complicated. Fortunately, we have shown that level sets of sum of squares convex polynomials turn out to be good geometric approximations. Another advantage is the model is very data-efficient, i.e., model identification only requires few force and velocity data collected by the robot pushing the object with a point finger. There are some additional nice provable properties of the models, and with these properties, we are able to perform applications including stable pushing and free sliding dynamics simulation.

[1] J. J. Moreau, “Unilateral contact and dry friction in finite freedom dynamics,” in Nonsmooth Mechanics and Applications, pp. 1–82, Springer, 1988.

[2] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction. Part 1. Limit surface and moment function,” Wear, vol. 143, pp. 307–330, 1991.

Paper: A Convex Polynomial Force-Motion Model for Planar Sliding: Identification and Application: Jiaji Zhou, Robert Paolini, James Bagnell, Matthew T. Mason

Read the award winning paper here



tags: , ,


Jiaji Zhou is a PhD student in the Robotics Institute of Carnegie Mellon University.
Jiaji Zhou is a PhD student in the Robotics Institute of Carnegie Mellon University.





Related posts :



#ICRA2023 awards finalists and winners

In this post we bring you all the paper awards finalists and winners presented during the 2023 edition of the IEEE International Conference on Robotics and Automation (ICRA).
05 June 2023, by

Ranking the best humanoid robots of 2023

Is Rosie the Robot Maid from the Jetsons here yet? As more and more companies announce their work towards the affordable humanoid robot, I wanted to create a reference chart.
03 June 2023, by

Robot Talk Episode 51 – James Kell

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to James Kell from Jacobs Engineering UK all about civil infrastructure, nuclear robotics and jet engine inspection.
02 June 2023, by

Automate 2023 recap and the receding horizon problem

“Thirty million developers” are the answer to driving billion-dollar robot startups, exclaimed Eliot Horowitz of Viam last week at Automate.
01 June 2023, by

We are pleased to announce our 3rd Reddit Robotics Showcase!

The 2021 and 2022 events showcased a multitude of fantastic projects from the r/Robotics Reddit community, as well as academia and industry. This year’s event features many wonderful robots including...
30 May 2023, by

European Robotics Forum 2023 was a success!

One of the highlights of the conference for us was our workshop "Supporting SMEs in Bringing Robotics Solutions to Market", where experts gave insights on how DIHs can create a greater impact for SMEs and facilitate a broad uptake and integration of robotics technologies in the industry.
28 May 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association