Robohub.org
 

Teaching robots the physics of sliding and pushing objects

by
16 June 2016



share this:

Robot learns to push object and identifies patch friction model. Source: YouTube

Robot learns to push object and identifies patch friction model. Source: YouTube



The Manipulation Lab at the CMU Robotics Institute proposes a computational model that relates an applied robot action to the resultant object motion. Their research won the Best Conference Paper Award at ICRA 2016.

Understanding the mechanics of manipulation is essential for robots to autonomously interact with the physical world. One of the common manipulation scenarios involves pushing objects in a plane subject to dry friction. We propose a planar friction (force-motion) model that relates an applied robot action to the resultant object motion.

The robot randomly pokes the object of known shape with a point finger to collect force-motion data. We then optimize a convex polynomial friction representation with physics-based constraints. Based on the representation, we demonstrate applications of stable pushing and dynamic sliding simulation.

The robot randomly pokes the object of known shape with a point finger to collect force-motion data. We then optimize a convex polynomial friction representation with physics-based constraints. Based on the representation, we demonstrate applications of stable pushing and dynamic sliding simulation.

The difficulty lies in that the contact between the object and supporting surface is an area-to-area contact with unknown pressure distribution. We don’t know which part of the area is supporting how much weight nor do we know the coefficient of friction. This makes object motion hard to predict. The key observation is the space of generalized friction force forms a convex set based on the principle of maximum dissipation (a generalized Coulomb’s friction law) [1]. The boundary of such set is termed as limit surface [2]. The geometry of such surface, albeit convex, can be complicated. Fortunately, we have shown that level sets of sum of squares convex polynomials turn out to be good geometric approximations. Another advantage is the model is very data-efficient, i.e., model identification only requires few force and velocity data collected by the robot pushing the object with a point finger. There are some additional nice provable properties of the models, and with these properties, we are able to perform applications including stable pushing and free sliding dynamics simulation.

[1] J. J. Moreau, “Unilateral contact and dry friction in finite freedom dynamics,” in Nonsmooth Mechanics and Applications, pp. 1–82, Springer, 1988.

[2] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction. Part 1. Limit surface and moment function,” Wear, vol. 143, pp. 307–330, 1991.

Paper: A Convex Polynomial Force-Motion Model for Planar Sliding: Identification and Application: Jiaji Zhou, Robert Paolini, James Bagnell, Matthew T. Mason

Read the award winning paper here



tags: , ,


Jiaji Zhou is a PhD student in the Robotics Institute of Carnegie Mellon University.
Jiaji Zhou is a PhD student in the Robotics Institute of Carnegie Mellon University.





Related posts :



Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by

The robots of CES 2023

Robots were on the main expo floor at CES this year, and these weren’t just cool robots for marketing purposes. I’ve been tracking robots at CES for more than 10 years, watching the transition from robot toys to real robots.
25 January 2023, by

Robot Talk Episode 33 – Interview with Dan Stoyanov

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Dan Stoyanov from University College London all about robotic vision, surgical robotics, and artificial intelligence.
20 January 2023, by

When a professor meets a farmer

There's a clear need for technology in farming but its problems are systemic, finds a critical design professor when she visits a flower bulb farmer. Watch this new episode of FRAIM in the Field.
19 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association