Robohub.org
 

The importance of research reproducibility in robotics


by
20 September 2017



share this:

As highlighted in a previous post, despite the fact that robotics is increasingly regarded as a ‘Science’, as shown by the launch of new journals such as Science Robotics, reproducibility of experiments is still difficult or entirely lacking.

This is quite unfortunate as the possibility of reproducing experimental results is a cornerstone of the scientific method. This situation pushes serious discussions (What’s ‘soft robotics’? Is it needed? What has to be ’soft’?) and paradigm clashes (Good Old Fashioned Artificial Intelligence vs. Deep Learning vs. Embodied Cognition) into the realm of literary controversy or even worse religious territory fights, with quite little experimental evidence supporting the claims of the different parties. Not even wrong, as they say (following Peter Woit’s arguments on String Theory)?

The robotics community has been aware of these issues for a long time and more and more researchers in recent years have published datasets, code and other valuable information to allow others to reproduce their results. We are heading in the right direction, but we probably need to do more.

I think we should therefore welcome the fact that for the first time ever, IEEE R&A Mag. will start accepting R-articles (i.e., papers that report experiments aiming to be fully reproducible) beginning this September. Actually, they will also accept short articles reporting on the replication of R-Article results, and author replies are solicited and will be published after peer-review. The result will be a two-stage high-quality review process. The first stage will be the ordinary rigorous review process of a top-tier publishing venue. The second stage will be the replication of the experiments by the community (which is the core of the scientific method).

This seems like a historical improvement, doesn’t it?

There is more information on this in the column I wrote in the September issue of IEEE Robotics and Automation.



tags:


Fabio Bonsignorio is a professor in the BioRobotics Institute at the Scuola Superiore Sant'Anna (Pisa, Italy).
Fabio Bonsignorio is a professor in the BioRobotics Institute at the Scuola Superiore Sant'Anna (Pisa, Italy).





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association