Robohub.org
 

The Year of CoCoRo Video #38/52: BEECLUST


by
22 September 2015



share this:

cocoro38b The EU-funded Collective Cognitive Robotics (CoCoRo) project has built a swarm of 41 autonomous underwater vehicles (AVs) that show collective cognition. Throughout 2015 – The Year of CooRo – we’ll be uploading a new weekly video detailing the latest stage in its development. This week we show an early laboratory experiment using the BEECLUST algorithm on a swarm of Lily robots.

The BEECLUST is a simple swarm algorithm derived from the walking and resting behavior of young honeybees, who can compare several temperature spots in their environment and collectively choose the optimal (warmest) spot. In our video, the algorithm was translated to underwater robots.

The robots move randomly in their habitat. When they meet another robot, they measure how deep the water below is. The more shallow the water, the longer they stay in place.

By running this algorithm, the swarm is able to identify shallow places and collectively choose the shallowest. The same algorithm can be used to find the deepest point, the darkest or the brightest, simply by correlating the resting time of the robots with other local environmental properties.

The BEECLUST is one of the simplest swarm algorithms possible, possibly even THE simplest. However, an algorithm like this does not suit every application: in our experiments we found that, in contrast to crawling honeybees in the hive or driving wheeled robots on the ground, it is very tricky for an AUV to stay in place in water because of drift and turbulence. Even in an aquarium this is an issue, with a number of robots moving around, so we concluded that, for a more turbulent underwater habitat, we needed a better algorithm than the classical BEECLUST.



tags: , , , , ,


Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.
Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.





Related posts :

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence