Robohub.org
 

Video of human controlling a quadrotor via non-invasive brain/computer interface

by
04 June 2013



share this:

Researchers from the University of Minnesota have developed a non-invasive brain/computer interface that allows humans to remotely control a robot (in this case, a quadrotor) using only their thoughts. The research team, led by Bin He, Professor of Biomedical Engineering, hopes this technology can one day be used to help people with speech and mobility problems.

According to research team member Karl LaFleur, “If you imagine making a fist with your right hand, it turns the robot to the right. And if you imagine making a fist with both hands, it moves the robot up.”

The beauty of this research is that no implants are required to interface with the system.

Instead, an EEG cap fitted with 64 electrodes is used to transmit the brain’s electric currents to a computer, which then sends the commands via Wi-Fi to the robot. This non-invasive approach to controlling assistive robotic devices is important because, while researchers have had some success using implants to control assistive systems, neural-machine connections tend to degrade over time.

Says Professor He: “We envision this technology will be used to control wheelchairs, artificial limbs or other devices.”

See also these similar systems:

 



tags: , , , ,


Robohub Editors





Related posts :



Robot Talk Episode 55 – Sara Adela Abad Guaman

In the first episode of the new season, Claire chatted to Dr. Sara Adela Abad Guaman from University College London about adaptable robots inspired by nature.
30 September 2023, by

A short guide to Multidisciplinary Research

How and Why would I consider colliding two opposite disciplines in my research.
27 September 2023, by

Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association