Robohub.org
 

Philae: A proof of concept for cometary landing

by
01 December 2014



share this:

Philae_touchdownWe asked Alan Winfield what the first successful landing on a comet means for the future of space mining. Find out his answer below.

The successful landing of Philae on comet 67P/Churyumov-Gerasimenko this November was an extraordinary achievement and of course demonstrates – despite the immense challenges – that it is possible. The Philae mission was, in a sense, a proof of concept for cometary landing and this, for me, answers the question ‘what does it mean‘.

Of course there is a very large distance between proof of concept and commercial application, so it would be quite wrong to assume that Philae means that space mining (of planets, asteroids or comets) is just around the corner. Undoubtedly the opportunities are immense and – as pressure on Earth’s limited and diminishing resources mounts – there is an inevitability about humankind’s eventual exploitation of off-world resources. But the costs of space mining are literally astronomical, so unthinkable for all but the wealthiest companies or, indeed, nations.

Perhaps multi-national collaborative ventures are a more realistic proposition and – for me – more desirable; the exploitation of the solar system is something I believe should benefit all of humankind, not just a wealthy elite.

But politics aside, there are profoundly difficult technical challenges. You cannot remotely control this kind of operation from Earth, so a very high level of autonomy is required and, as Philae dramatically demonstrated, we need autonomous systems that are able to deal with unknown and unpredictable situations then re-plan and if necessary adapt – in real-time – to deal with these exigencies. The development of highly adaptive, resilient, self-repairing – even self-evolving – autonomous systems is still in its infancy. These remain fundamental challenges for robotics and AI research. But even if and when they are solved there will be huge engineering challenges, not least of which is how to return the mined materials to Earth.

Bearing in mind that to date only a few hundred kg of moon rock have been successfully returned* and Mars sample-return missions are still at the planning stage, we have a very long way to go before we can contemplate returning sufficient quantities to justify the costs of mining them.

*and possibly a few grains of dust from Japanese asteroid probe Hayabusa.

For other views on the Philae touchdown and the future of space mining and exploration, see:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by

RoboCup humanoid league: Interview with Jasper Güldenstein

We talked to Jasper Güldenstein about how teams transferred developments from the virtual humanoid league to the real-world league.
20 September 2022, by and

Integrated Task and Motion Planning (TAMP) in robotics

In this post we will explore a few things that differentiate TAMP from “plain” task planning, and dive into some detailed examples with the pyrobosim and PDDLStream software tools.
16 September 2022, by
ep.

360

podcast

Building Communities Around AI in Africa, with Benjamin Rosman

Deep Learning Indaba is an organization that empowers and builds communities around Artificial Intelligence and Machine Learning across Africa. Benjamin Rosman dives into how Deep Learning Indaba is impacting these communities.
14 September 2022, by

Peace on Earth (1987): Using telerobotics to check in on a swarm robot uprising on the Moon

Read this classic hard sci-fi novel and expand your horizons about robots, teleoperation, and swarms.
13 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association