Robohub.org
 

Why we need journalism about machine learning


by
25 September 2015



share this:

Talking Machines

Talking Machines is in the process of raising funds to defray the cost of producing our first season and to help us start production on our second season. On the show we’ve talked about how we’ll use the money (to pay for studio time, editing, and the cost of travel to get our great interviews). But we haven’t gotten to the heart of the question yet: Do we even need journalism about machine learning?

We need journalism about machine learning, artificial intelligence, and data science desperately. Not just to calm the public conversation, which always seems to be full of hype on these topics, but to make sure that work in our field is sustainable. And no one is going to make the case for our industry unless we do it ourselves.

I live in Cambridge, MA. A lot of the people here are scientists or are training to enter the field. From the vantage point of Cambridge, the answer seems to be a resounding yes, we do need journalism about these topics, and Talking Machines is a way for those in the field to access each other’s ideas, and for those in training to get exposure to work they might not have heard of.

But not all of our listeners live in Cambridge, or come from an academic background. We get letters from all over the world saying that Talking Machines has allowed them to better understand ideas they’d like to use in their business, helped them talk with their data teams, or helped them make the right hire.

Most importantly though, not all of our listeners think they live a life that has anything to do with machine learning, or computer science .. or science at all. We started Talking Machines because we wanted to open the world of machine learning up to a wider audience, to help them understand the reality of research in the field and the industry, and how that impacts their lives in a real way on a daily basis.

The public conversation around machine learning (and by extension artificial intelligence) is filled with extreme hype, both positive and negative. These extremes have lead to a crippling pattern of “winters” where interest, activity, and funding in the field dries up. If we present the reality of what is happening in the field in a way that invites the public to be part of the conversation, that arms them with the knowledge they need to participate, and we will create a more sustainable industry for ourselves. For our own benefit, and for the good of those who use the tools we make, it’s our responsibility to play a bigger role than we have before in the public conversation.

Talking Machines does just that. By introducing machine learning to a wide audience in a way that allows people in, we ensure realistic expectations of work coming out of both in the industry and the field. More than that, we allow people to understand the tools that they use every day and the impact that they have. It is our responsibility to make sure we are accurately represented, and only we can do that. Our project has been going on for a little under a year now, and we’ve made a difference in the accessibility of the field.

But if we’re going to keep going, we need your help to do so.

Support Talking Machines’ Kickstarter campaign to keep journalism on machine learning going strong! 

 



tags: , , , , ,


Talking Machines is your window into the world of machine learning.
Talking Machines is your window into the world of machine learning.





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence