Robohub.org
 

A drone with insect-inspired folding wings


by
03 October 2016



share this:

foldable_drone_resizedWhen designing robots to help in the search for victims after a natural disaster, a number of features are important: robustness, long battery life and ease of transport. With this latest constraint in mind, a team from Floreano Lab, EPFL and NCCR Robotics will present their new drone with insect-inspired folding wings at IROS 2016.

What makes these wings different to previous solutions is the origami techniques used to produce it, creating the perfect folding structure. First, the research team looked for examples from nature which exhibit folding patterns with a high size reduction and one degree of freedom to fold the wing with single and intuitive movement in a short amount of time. Coleopterans (beetles) were found to not only have the perfect wings, but also control wing deployment from the base of the wing, making them easier to artificially replicate.

Through prototyping and modelling, the original coleopteran blueprints were adapted and updated. The artificial crease pattern achieves a significant size reduction. In the stowed configuration the wingspan is 43% and the surface is 26% of the respective dimensions in the deployed configuration. Despite the complexity of the patterns, the wing has a single degree of freedom and can be folded using only one simple movement.

Finding the crease pattern was only one of the issues that the research team hoped to solve. When using paper for origami, the thickness is negligible, however, when creating a wing, a thicker material must be employed in order to sustain the stresses created during flight. The thicker material is accounted for by creating a 3D folding pattern with tiles of different thickness. The addition of compliant and bistable folds made of pre-stretched latex ensures maximum durability and a smooth deployment.

The presented wings are 26g in weight, with dimensions of 115 x 215 x 40 mm when folded and 200 x 500 x 16 mm when deployed, giving 160 cm2 surface area and 989 cm3 volume when folded and 620 cm2 surface area and 1600 cm3 when deployed. The resulting drone has been tested against a comparable rigid wing in a wind-tunnel, and showed only marginally less good performance when considering lift/drag values.

The ability to create a lightweight, durable drone that is capable of being easily transported and quickly deployed moves us not only closer to commonplace use of robots in locating victims after natural disasters, but also in land and space exploration, aeronautics and civil inspections.

Reference:

Dufour, Louis; Owen, Kevin; Mintchev, Stefano; Floreano, Dario, A Drone with Insect-Inspired Folding Wings, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Daejeon, Korea, October 9-14, 2016



tags: , ,


NCCR Robotics





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence