Robohub.org
 

A self-deploying, foldable quadrotor for rapid rescue


by
18 May 2015



share this:
Quad in both operation and folded positions

The foldable quadrotor is small enough to fit in a hand (Photo: LIS, EPFL, NCCR Robotics).

The use of robots to find victims after natural disasters is fast becoming commonplace, with well documented cases where robots have been sent into areas too dangerous for rescue workers.  While the issues surrounding robustness, control and autonomy are frequently cited as key areas for research, a  team from LIS, EPFL and NCCR Robotics is working on another important aspect, how to make flying robots easily transportable and quick to deploy.

In a paper, which will be presented at the International Conference on Robotics and Automation (ICRA) 2015, the team describes how they made a quadrotor with rapidly self-deploying, folding arms. Foldable aerial platforms currently use either beams or detachable appendages (e.g. DJI spreading wings series and SenseFly eBee), which require manipulation by the user, slowing the process down and introducing the possibility of human error. The presented prototype has self-deploying arms that go from completely stowed to ready-to-use in 0.3 seconds, meaning that multiple drones can be utilized at once in a very short period of time.

The origami arms are stored using a system of strategically placed magnets, which can use the torque and thrust generated by the propellers to break the magnetic seal, thus allowing the arms to deploy when the quadrotor is switched on. In order to make use of such a simple mechanism, the design team carefully considered the placement of the folds in the arms; to take advantage of the propeller’s torque, folds are parallel to the its axis.

The origami structures that make up the arms allow them to fold around the central core, reducing its volume to about a third of commercial quadrotors of a similar weight. To make the origami structures, the arms are constructed from a 0.3mm layer of fiberglass over Icarex, a lightweight and inextensible fabric. Two vertical folds in the 2D structure allow the arms to lie in the wrapped configuration. When the motor begins, the action of the propellers forces the magnets apart and allows the arm to straighten in its flat configuration, whereupon a second set of magnets attract and pull the horizontal fold (down the centre of the arm) closed, creating a stiff, 3D structure with no need for heavy locking mechanisms.

Stefano Mintchev holds the quadrotor

First author Stefano Mintchev holds the quadrotor (Photo: LIS, EPFL, Alain Herzog).

The folding quadrotor currently doesn’t have an automatic “putting away” mode, meaning that the arms must be manually returned to the wrapped configuration. However, at the deployment stage, where speed is of the essence when trying to locate vulnerable people, this mechanism may just be a lifesaver.

Reference

S. Mintchev, L. Daler, G. L’Eplattenier, L. Saint-Raymond & D. Floreano, “Foldable and Self-Deployable Pocket Sized Quadrotor,” In 2015 IEEE International conference on Robotics and Automation (ICRA 2015), Seattle, Washington, USA, May 26-30, 2015.  A pdf of the full article can be downloaded from infoscience.



tags: , , , , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Soft robots inspired by plants, with Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Microscopic surgical robots, with Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Robots in space, with Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Robots mapping the deep ocean, with Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Robotic chemists to discover new materials, with Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association