Robohub.org
 

Cooperative payload transportation with UAVs


by
27 April 2017



share this:

Delivery robots are touted as gaining widespread popularity in the near future. Wheeled models could be suitable for urban areas, while UAVs have great potential in accessing difficult areas and carrying a variety of payloads. But first we have to overcome technical barriers, safety issues and more than a few legal aspects.

We are use to thinking that a single UAV will only transport a single small box. However a mass delivery service should also focus on the possibility of charging big solids in the pursuit of service viability and success. In this scenario, UAV cooperative teams could play a key role in the industry. This idea has proven to be feasible, as ETH shows:

UAV swarms could be useful in cases where payloads are too heavy to be charged by a single multirotor, its shape is large, or even with deformable solids (such as wires or ropes). Two or more drones can form a swarm.

In the case of deformable linear solids, the payload could be the solid itself (for instance, high tension lines and tethered multirotors), or we could make use of the ropes to transport a payload attached to them. In fact, this type of transportation solution is not only needed for commercial delivery purposes, but also might be useful for cable manipulation in catastrophic indoor scenarios or maintenance operations in narrow spaces. A wire linking some drones restricts their behaviour differently from solid bars links or no links at all.

https://www.youtube.com/watch?v=Cb6DBu8pHO0

Cooperative transportation systems require a specific control and path planning strategy compared to single robots. Deformable solids act as passive loads that affect robot dynamics, and a proper coordination among robots is essential for an efficient energy usage. Imagine a drone running out of battery faster than the rest of the swarm. Equi-load distribution of all the team members, and keeping the payload clamped to the gravity centre of the UAV, are some of the basic assumptions to be made in this kind of systems. An additional requisite is that particularly in paths with obstacles, the displaced distance of each drone also is very important. About engineering control, different options may vary depending on the centralised or decentralised control of the drones, and deterministic type of control (such as PID or LQR) are showing good results.

Deformable solid linking among flying vehicles is not a new phenomenon: aerial refuelling already exists, but with manned vehicles. Unmanned vehicles present new challenges, and researchers have advanced this field in the last decade, although hundreds of real tests under wind conditions and variable payloads are necessary to achieve a fully operative and robust system.


References:

Estevez, J., Graña, M., & Lopez-Guede, J. M. (2016). “Online fuzzy modulated adaptive PD control for cooperative aerial transportation of deformable linear objects”. Integrated Computer-Aided Engineering, 24(1), pp. 41-55.

Maza, I., Kondak, K., Bernard, M., & Ollero, A. (2010). “Multi-UAV cooperation and control for load transportation and deployment”. Journal of Intelligent and Robotic Systems, 57(1-4), 417.

Michael, N., Fink, J., & Kumar, V. (2011). “Cooperative manipulation and transportation with aerial robots”. Autonomous Robots, 30(1), 73-86.

Palunko, R. Fierro, and P. Cruz (2012). “Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach”. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 2691–2697.



tags: , , , , ,


Julian Estevez is an Assistant Professor at the Faculty of Engineering at the University of the Basque Country.
Julian Estevez is an Assistant Professor at the Faculty of Engineering at the University of the Basque Country.





Related posts :



Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence