Robohub.org
 

Developing trust in autonomous robots: Seminar with Michael Wagner


by
06 March 2015



share this:

see_no_evil_mask_hand_over_eye_ethicI recently had the opportunity to hear a talk from a colleague that I have worked with many times over the years. The talk was all about how to build safe and robust systems – a critical topic that we often pass over, but one that needs to be addressed if robots are to enter into the workforce alongside people.

Below are some key takeaway points from the talk (with some embellishment by me), followed by a video clip of the talk itself.

Physical Safety

  • One way to determine how close people can be to autonomous vehicle is to look at the speed with which you can stop the vehicle, and the distance traveled in that time. When looking at the time to stop the vehicle you need to look at human reaction time, signal latencies, and mechanical stopping time of vehicle.
  • You can improve the above time by having an independent safety critical system onboard that evaluates safety at run-time and can stop vehicle faster than a human can. I really like this idea and have taken a similar (more basic) approach in the past

Testing Motivation

  • IEC-61508 is a key safety standard for determining how safe a system needs to be. It provides guidance on what traits map to a given safety integrity level. However, dynamically changing parameters and AI generally make a system fall into the NOT safe categories.
  • For safety critical systems we need to look at the worst case scenarios (and not the nominal or best case).
  • We need to test, since some scenarios will violate assumptions that we did not even know that we made.
  • “No amount of experimentation can ever prove me right; a single experiment can prove me wrong” – Albert Einstein
  • Software cares about the range of the inputs and not necessarily about the duration that you run the code for. (Duration can also matter and needs to be tested for memory usage, and other unexpected parameters that will only show up after code has been running for awhile.)
  • The value of a test is not the test, but how you improve the system and learn from it

Testing Approach

  • Field testing is very important. Field test till errors diminish. Then simulate system for the “next million miles.”
  • The question becomes how to simulate and error check the code. One method is with robustness testing, which lets the software use automated methods to find the problems, so that the developers know what to fix.
  • With robustness testing you can apply random inputs to the system and see what causes it to crash or hang. This lets you simulate inputs and not just scenarios.
  • You can also probabilistically modify the real world inputs that are entering your system, and verify the outputs.
  • Use system requirements to generate safety rules that are checked in real-time. The great thing about safety rules is that if a rule ever fails, you know something is wrong, and the code/test/robot can stop.
  • You can also add a dictionary test on your code, where you control the inputs to see what the outputs will be. You can build a dictionary over time so that as you continue testing the system you do not reintroduce old errors that you have seen already.
  • Temporal logic is useful to create rules such as “get a message within x seconds”; as opposed to “a message must respond eventually”. Tests need to reflect that.

Things that commonly fail testing:

  • Improper handling of floating point numbers (out-of-bounds, NaN, infinite (inf), etc.
  • Array indexing
  • Memory issues. Leaking, too much specified, not enough specified, buffer overflows, etc.
  • Time going backwards and old/stale data (I have seen this error more times than I can remember)
  • Problems handling dynamic state

And now the part you have been waiting for:

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , ,


Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.
Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence