Robohub.org
 

‘IDSC Tailsitter’ flying robot performs vertical loops and easily transitions between hover and forward flight


by
28 July 2016



share this:
Image credit: Robin Ritz

Source: Robin Ritz, Institute for Dynamic Systems and Control, ETH Zurich.

The IDSC Tailsitter has been designed at the Institute for Dynamic Systems and Control, ETH Zurich, as a testbed for novel control algorithms for tailsitter vehicles. The goal of the project is to develop controllers that enable agile and robust flight for all flight regimes, such that the full potential of these vehicles can be exploited.

Airframe based on a Clark Y profile. Source: Robin Ritz, Institute for Dynamic Systems and Control, ETH Zurich.

Airframe based on a Clark Y profile. Source: Robin Ritz, Institute for Dynamic Systems and Control, ETH Zurich.

The airframe of the vehicle is based on a Clark Y profile and designed such that for regular flight the pitching moment vanishes for zero flap angle, and such that the aerodynamic neutral point coincides with the vehicle’s center of gravity. The objective of this design is to allow agile maneuvers for all flight regimes and to avoid flap angle saturation problems caused by large trim angles.

Internal structure. Source: Robin Ritz, Institute for Dynamic Systems and Control, ETH Zurich.

Internal structure. Source: Robin Ritz, Institute for Dynamic Systems and Control, ETH Zurich.

The internal structure of the vehicle is built upon a core of a carbon sandwich composite material. The motors and servos are attached to the core using 3D-printed mountings, where the servos are placed such that they can be directly connected to the flaps. Further, a set of wing profile ribs and two carbon fiber tubes on the side for protection are mounted to the core structure. The electronics are placed at the center of the vehicle, and the battery at the front such that the center of gravity is at the desired position. All parts of the vehicle are screwed together (no glue is used), in order to simplify the replacement of broken components. The tailsitter’s wingspan is 48cm and the total weight is 150g.

The vehicle is controlled by a global controller enabling recovery to hover from any initial condition. A cascaded control architecture is used: Based on position and velocity errors an outer control loop computes a desired attitude keeping the vehicle in coordinated flight, while an inner control loop tracks the desired attitude using a lookup table with precomputed optimal attitude trajectories. The controller runs with an update rate of 500Hz on a Cortex M4F microprocessor. The vehicle is able to communicate with a ground station using an nRF51822 chip from the company Nordic Semiconductor. Communication can be established for recording telemetry data or for sending high-level commands to the vehicle, such as “take-off” or “land”. However, the vehicle is able to fly autonomously, the trajectories that are being tracked are stored on-board.

The on-board state estimation algorithms and technology are provided by the ETH spin-off company Verity Studios.

The attitude control algorithm is presented in the research paper “A Global Strategy for Tailsitter Hover Control”, International Symposium on Robotics Research (ISRR), 2015.

Researchers

Robin Ritz and Raffaello D’Andrea
Institute for Dynamic Systems and Control (IDSC), ETH Zurich, Switzerland
Flying Machine Arena

Technical details

Airframe: Custom design based on a Clark Y profile
Electronics: Custom design using a Cortex M4F microprocessor
Battery: Thunder Power RC G8 Pro Lite 25C LiPo 480mAh 2S
Motors: Hacker A05-13S
Motor controllers: Dys SN20A Mini ESCs with SimonK firmware
Propellers: 5×3 GWS EP-5030
Flap servos: MKS DS65K
Infrastructure: Flying Machine Arena


If you enjoyed this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , ,


Robin Ritz is a doctoral candidate at ETH Zurich.
Robin Ritz is a doctoral candidate at ETH Zurich.





Related posts :



Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence