Robohub.org
 

Robotics has a new kind of Cartesian Dualism, and it’s just as unhelpful


by
22 July 2013



share this:

I believe robotics has re-invented mind-body dualism.

At the excellent European Robotics Forum earlier this year, I attended a workshop called AI meets Robotics. The thinking behind the workshop was:

The fields of Artificial Intelligence (AI) and Robotics were strongly connected in the early days of AI, but became mostly disconnected later on. While there are several attempts at tackling them together, these attempts remain isolated points in a landscape whose overall structure and extent is not clear. Recently, it was suggested that even the otherwise successful EC program “Cognitive systems and robotics” was not entirely effective in putting together the two sides of cognitive systems and of robotics.

I couldn’t agree more. Actually I would go further and suggest that robotics has a much bigger problem than we think. It’s a new kind of dualism which parallels Cartesian brain-mind dualism, except in robotics, it’s hardware-software dualism. And like Cartesian dualism it could prove just as unhelpful, both conceptually, and practically – in our quest to build intelligent robots.

While sitting in the workshop last week I realised rather sheepishly that I’m guilty of the same kind of dualistic thinking. In my Introduction to Robotics one of the (three) ways I define a robot is: an embodied Artificial Intelligence. And I go on to explain:

…a robot is an Artificial Intelligence (AI) with a physical body. The AI is the thing that provides the robot with its purposefulness of action, its cognition; without the AI the robot would just be a useless mechanical shell. A robot’s body is made of mechanical and electronic parts, including a microcomputer, and the AI made by the software running in the microcomputer. The robot analogue of mind/body is software/hardware. A robot’s software – its programming – is the thing that determines how intelligently it behaves, or whether it behaves at all.

But, as I said in the workshop, we must stop thinking of cognitive robots as either “a robot body with added AI”, or “an AI with added motors and sensors”. Instead we need a new kind of holistic approach that explicitly seeks to avoid this lazy “with added” thinking.

[This post originally appeared on Alan Winfield’s blog on March 24, 2013.]



tags: , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence