Robohub.org
 

Social learning


by
29 August 2010



share this:

Robots are portrayed as tomorrows helpers, be it in schools, hospitals, workplaces or homes. Unfortunately, such robots won’t be truly useful out-of-the-box because of the complexity of real-world environments and tasks. Instead, they will need to learn how to interact with objects in their environment to produce a desired outcome (affordance learning).

For this purpose, robots can explore the world while using machine learning techniques to update their knowledge. However, the learning process is sometimes saturated with examples of objects, actions and effects that won’t help the robot in its purpose.

In these cases, humans or other social partners can help direct robot learning (social learning). Most studies have focussed on scenarios where a teacher demonstrates how to correctly do a task. The robot then imitates the teacher by reproducing the same actions to achieve the same goals.

This approach, while being very efficient, typically means that the teacher needs to take time to train the robot, which can be burdensome. Furthermore, the robot might be so specialized for the demonstrated scenario that it will have trouble performing tasks that slightly differ. In addition, imitation only works when the teacher and robot have similar motion constraints and morphologies.

Luckily, humans and animals use a large variety of mechanisms to learn from social partners. Tapping into this reservoir, Cakmak et al. propose mechanisms where:
– robots interact with the same objects as the social partner (stimulus enhancement)
– robots try to achieve the same effect on the same object as the social partner (emulation)
– robots reproduce the same action as the social partner (mimicking)

Experiments performed in simulation compare stimulus enhancement, emulation, mimicking, imitation and non-social learning in a large variety of situations. The results summarize which mechanisms are better suited for which scenarios in a series of very useful guidelines. Demonstrations with two robots, Jimmy and Jane, were done to validate the study. Don’t miss the excellent video below for a summary of the article.

In the future, Cakmak et al. will focus on combining learning approaches to harness the full potential of this rich set of mechanisms.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence