Robohub.org
 

Applying direct transcription methods to robot motion planning


by
08 March 2016



share this:
Source: ADRLabETH/youtube

Hardware experiments on motion planning for the the ballbot Rezero using direct transcription. Source: ADRLab ETH/youtube

When you walk across a room or down a path, your brain is making thousands of decisions on how best to move. For example, how best to use your weight, scanning for any obstacles or uneven surfaces, and how rigid (or soft) your limbs and joints should be. Teaching a robot to conduct the same decision-making process is ongoing in robotics, and a team from ADRL, ETH Zurich and NCCR Robotics is studying existing direct transcription methods for trajectory optimization applied to robot motion planning.

Rezero, the dancing ballbot

Rezero, the dancing ballbot. Source: ETH Zurich.

Using a method of control called direct transcription (where complex mathematical problems are broken down into smaller problems and each solved individually), the team uses direct transcription to enable an unstable ball-balancing robot to perform a series of tasks with increasing complexity. The common issue with direct optimisation methods, which are used to allow the robots to obtain more natural movements, is that they require computers to continuously run multiple algorithms at once, meaning that planning a path in real time, like the human brain does, has not yet been achieved. Simply put, the computers working online with a robot are nowhere near as fast, efficient and robust as your brain, and that’s before considering how heavy such a computer might need to be, or how much bandwidth this communication requires.

First, by using computer models, the team tested the unstable ball balancing robot (see video below) with three variations of a simple task where the robot had to move from one location to another while avoiding fixed obstacles. By allowing the robot to use the best solution it found for previous tasks, coupled with a feedback controller to stabilise the system, the simulated robot was able to find a path through two obstacles in under a second. When using the real robot, the same paths and trajectories were followed, with the robot reaching the planned destination safely and in the same period of time as the virtual robot, thus validating the hypothesis.

The speed with which the robot is able to assess its scenario and follow a path that it has decided for itself without falling is a positive step forward that can be transported onto more complex robots (such as quadrupedal robots) in more uneven environments.

If a quadrupedal robot, such as HyQ or StarlETH, are able to understand obstacles in its path and successfully avoid or modify a movement to accommodate, such as softening joints when walking over rocks, then robots have made one step further towards regularly being sent to disaster zones to locate victims and save more lives.

Reference: 
D. Pardo, L. Möller, M. Neunert, A. W. Winkler and J. Buchli, “Evaluating direct transcription and nonlinear optimization methods for robot motion planning”, IEEE RA-L, 2016.


tags: , , ,


NCCR Robotics





Related posts :



Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence